
www.manaraa.com

www.manaraa.com

Research Reports ESPRIT

Project 26 . SIp· Vol. 1

Edited in cooperation with
the Commission of the European Communities

www.manaraa.com

G. Pirani (Ed.)

Advanced Algorithms and
Architectures for
Speech Understanding

Springer-Verlag
Berlin Heidelberg New York London

Paris Tokyo Hong Kong Barcelona

www.manaraa.com

Volume Editor

Giancarlo Pirani
CSELT
Via Reiss Romoli, 274
1-10148 Torino, Italy

ESPRIT Project 26 "Advanced Algorithms and Architectures for Speech and Image
Processing (SIP)" has the objective to develop the algorithmic and architectural
techniques required for recognizing and understanding spoken or visual signals
and to demonstrate these techniques in suitable applications.

The work was planned in three parallel areas: speech analysis, image analysis, and
pattern recognition and understanding. Work on speech processing took two ap­
proaches, one statistical and one knowledge based. In image processing, various
algorithms were analyzed, compared and implemented, and different layer approa­
ches to the architecture for image feature extraction were considered. Medical and
industrial applications were used to test the tools developed and to study the issues
involved.

ISBN-13: 978-3-540-53402-0

001: 10.1007/978-3-642-84341-9

e-ISBN-13: 978-3-642-84341-9

This work is subject to copyright All rights are reserved, whether the whole or part of the material is con­
cerned, specifically the rights of translation, reprinting, re-use of illustrations, recltetion, broadcasting,
reproduction on microfilms or in other ways, and storage in date banks. Duplication of this publication or
parts thereof Is only permitted under the provisions ofthe German Copyright Law of September9, 1965, in its
version of June 24, 1985, and a copyrightfee must always be paid. Violations tell under the prosecution act of
the German Copyright Law.

Publication No. EUR 12821 of the
Commission of the European Communities,
Scientific and Technical Communication Unit,
Directorate-General Telecommunications, Information Industries and Innovation,
Luxembourg
Neither the Commission ofthe Europeen Communities nor any person acting on behalfoftheCommission is
responsible for the use which might be made of the following Information.

© ECSC - EEC - EAEC, Brussels - Luxembourg, 1990

Softcover reprint of the hardcover 1st edition 1990

2145/3140-543210 - Printed on acid-free paper

www.manaraa.com

Preface

This book is intended to give an overview of the major results achieved in the field of
natural speech understanding inside ESPRIT Project P. 26, "Advanced Algorithms and
Architectures for Speech and Image Processing".

The project began as a Pilot Project in the early stage of Phase 1 of the ESPRIT
Program launched by the Commission of the European Communities. After one year, in
the light of the preliminary results that were obtained, it was confirmed for its 5-year
duration.

Even though the activities were carried out for both speech and image understand­
ing we preferred to focus the treatment of the book on the first area which crystallized
mainly around the CSELT team, with the valuable cooperation of AEG, Thomson-CSF,
and Politecnico di Torino.

Due to the work of the five years of the project, the Consortium was able to develop an
actual and complete understanding system that goes from a continuously spoken natural
language sentence to its meaning and the consequent access to a database.

When we started in 1983 we had some expertise in small-vocabulary syntax-driven
connected-word speech recognition using Hidden Markov Models, in written natural lan­
guage understanding, and in hardware design mainly based upon bit-slice microprocessors.

At that time the USA and Japan were starting big projects with very ambitious objec­
tives in speech recognition and understanding: the former was supported by the Advance
Research Project Agency of the US Department of Defense (DARPA), while the latter
was related to one of the fundamental issues of the Fifth Generation Computer Project.

Given this scenario, the task we were undertaking was very challenging, and some fear
stemming from the comparison with these giants was unavoidable. However, at the end
of the project, the results obtained were quite satisfactory and allowed us to look at new
developments and applications in the second phase of ESPRIT with a significant degree
of confidence. We felt that we had given a small contribution to the fundamental goal of
the ESPRIT Program of reducing the technological gap that divided Europe from USA
and Japan.

Three partners guaranteed the stability and continuity of the project for its entire du­
ration: AEG (now Daimler Benz), CSELT, and Thomson-CSF. They formed the core of
the Consortium which allowed it to cope successfully with the departure of some partners
and to find some new ones with a remarkable technical skill and speculative attitude.
The success of the project was not only determined by the skill of the researchers who
took part in it but also by the sound management of the committee that steered it: this
committee was chaired with invaluable efficiency by G. Perucca (Project Manager) who
represented the Prime Contractor (CSELT) and was composed of the Technical Manage­
ment Committee Coordinator, S. Giorcelli (CSELT), and of the Technical Management

www.manaraa.com

VI

Preface

Committee Members representing the other partners: H. Mangold (AEG), T. de Couasnon
(Thomson-CSF), G.E. Hirsch (Ecole Nationale Superieure de Physique de Strasbourg),
and, for the first half of the project period, P.V. Collins (GEC). Finally the valuable
supervision effort of the CEC Project Officer, T. Van der Pyl, is worthy of particular
mention.

www.manaraa.com

List of Contributors

Gian Paolo Balboni, CSELT, Italy
Piergiorgio Bosco, CSELT, Italy
Robert Breitschadel, Daimler Benz, West Germany
Carlo Cecchi 1, CSELT, Italy
Alberto Ciaramella, CSELT, Italy
Davide Clementi no , CSELT, Italy
Luciano Fissore, CSELT, Italy
Roberto Gemello, CSELT, Italy
Egidio Giachin, CSELT, Italy
Alfred Kaltenmeier, Daimler Benz, West Germany
Pietro Laface, Politecnico di Torino, Italy
Riccardo Melen, CSELT, Italy
Giorgio Micca, CSELT, Italy
Corrado Moiso, CSELT, Italy
Roberto Pacifici, CSELT, Italy
Roberto Pieraccini 2, CSELT, Italy
Giancarlo Pirani, CSELT, Italy
Jean Pierre Riviere, Thomson-CSF, France
Claudio Rullent, CSELT, Italy
Giorgio Sofi, CSELT, Italy
Giovanni Venuti, CSELT, Italy

ldied in 1990
2now with AT&T Bell Labs

www.manaraa.com

Table of Contents

1 Introduction to the Book
Giancarlo Pirani (CSELT)

1.1 Historical Notes
1.2 Overview of the Book .

1

1
4

2 The Recognition Algorithms 7
Luciano Fissore (CSELT), Alfred Kaltenmeier (Daimler Benz), Pietro La/ace
(Politecnico di Torino), Giorgio Micca (CSELT), Roberto Pieraccini (CSELT)

2.1 Introduction....... 7
2.2 System Description 9

2.2.1 System Overview . 11
2.2.2 Feature Extraction 14
2.2.3 Mel-based Spectral Analysis. 14
2.2.4 Vector Quantization 16
2.2.5 The Phonetic Representation 19

Phonetic transcription 20
Underlying phonetic structure 21
Contextual rules 23

2.3 Lexicon Structure
2.3.1 Phonetic Segmentation

Phonetic classification
Phonetic segmentation

2.4 Word Representation
2.4.1 Three-Dimensional DP Matching

Matching costs
Duration of micro-segments .
Reliability of micro-segments.

2.4.2 Lexical Access
Experimental results
Use of heuristics. . .

2.5 Verification Module
2.5.1 The Recognition Units
2.5.2 Model Estimation . . .
2.5.3 Experimental Results .
2.5.4 Conclusions

2.6 Continuous Speech
2.6.1 Control Strategies.

24
25
25
30
33
34
36
37
39
40
43
47
51
54
55
56
59
60
62

www.manaraa.com

x Table of Contents

Cascade integration
Full integration

2.6.2 Word Hypothesis Normalization.
2.6.3 Lattice Filters
2.6.4 Efficiency Measures . .
2.6.5 Experimental Results .

2.7 Conclusions
Bibliography

3 The Real Time Implementation of the Recognition Stage
Robert Breitschaedel (Daimler Benz), Alberto Ciaramella (CSELT),
Davide Clementino (CSELT), Roberto Pacifici (CSELT),
Jean Pierre Riviere (Thomson-CSF), Giovanni Venuti (CSELT)

3.1 Introduction
3.2 System Overview

3.2.1 Functions Overview ..
3.2.2 Architecture Overview
3.2.3 System Control and Synchronization Methods
3.2.4 System Run-Time Evolution
3.2.5 Details on the Asynchronous Stage Activity

3.3 Hardware Details
3.3.1 DSP Board Description

DSP board architecture requirements
DSP board architecture details
DSP kernel

3.3.2 Acquisition Board Description.
Acquisition board requirements
Acquisition boards architecture details
Acquisition functions .

3.3.3 System Configuration.
3.4 Firmware Blocks Details .

3.4.1 Feature Extraction .
Generalities
DSP1 control details
DSP1 algorithm details.

3.4.2 Segmentation and Lexical Access
3.4.3 Markov Verifier Firmware

Generalities
Verification stage details

3.5 Some Details on Other System Functions
3.5.1 Program Loading and System Testing.
3.5.2 Acquisition Firmware Details . . .
3.5.3 Parameters Training Environment.

3.6 System Evaluations
3.6.1 General Considerations
3.6.2 Single-Step Isolated Words Recognition .

63
63
66
67
68
69
72
75

79

79
82
82
83
87
88
92
95
95
95
95
96

101
101
101
103
103
105
105
105
108
111
113
113
113
115
120
120
121
123
123
123
125

www.manaraa.com

Table of Contents XI

3.6.3 Two-Step Isolated Words Recognition. 125
3.6.4 Single-Step Continuous Speech Recognition 126

3.7 Conclusions 128
Bibliography 131

4 The Understanding Algorithms 135
Roberto Gemello, Egidio Giachin, Claudio Rullent (CSELT)
4.1 Overview......................... 135

4.1.1 IntroduCtion.................... 135
4.1.2 Some Basic Requirements of a Parser for Speech . 137
4.1.3 Knowledge Sources from Dependency Rules and Conceptual Graphs 138
4.1.4 The Importance of Control Strategies 139

Two reasons for an effective control strategy 139
The role of expectations: Integrating top-down and bottom-up pars-

ing strategies 140
Deduction instances and search 141
Joining deduction instances ..

4.1.5 Control Strategy and Operators
4.1.6 Representing Deduction Instances with Memory Structures
4.1.7 Implementation, Development System and Results.

4.2 Representation of Syntax .
4.2.1 Introduction
4.2.2 Interaction Between Syntactic and Semantic Knowledge.
4.2.3 Dependency Grammar

Definitions.

141
142
142
143
143
143
144
145
145

An example . 146
Relations between dependency grammar and context-free grammar 146
Remarks on dependency grammars 146

4.2.4 Morphological Agreement Rules 148
Structure of agreement rules . . 149
Definition of agreement rules. . 149
Morphological agreement checks 150
Morphological features statically associated to words 150
Agreement check modalities 151

4.3 Representation of Semantics. 151
4.3.1 Introduction.............. 151
4.3.2 Word Information in the Dictionary. 151
4.3.3 Caseframes and Conceptual Graphs . 152
4.3.4 The use of Conceptual Graphs. . . . 153
4.3.5 Representation of the Utterance Meaning 154

4.4 The Compiler of Conceptual Graphs and Dependency Rules 155
4.4.1 Introduction....................... 155
4.4.2 The Use of Dependency Rules 155
4.4.3 Integrating Conceptual Graphs and Dependency Rules - the Map-

ping Knowledge 156
4.4.4 Combining Different Conceptual Graphs 158

www.manaraa.com

XII Table of Contents

4.4.5 A More Complete Example 159
4.5 Parsing - Conceptual Level 160

4.5.1 Introduction......... 160
4.5.2 Lexical Component and Model Component. 161
4.5.3 Importance of a Score Guided Search 162
4.5.4 Search from the Point of View of the Lexical Component 162

Control strategy of the lexical component. 162
4.5.5 Relations with the Model Component . 163
4.5.6 Relations with some Former Systems . . . 163
4.5.7 The Model Component 164

A simplified view: the problem solving paradigm. 164
The knowledge source partition . . 165
Knowledge sources, facts and goals . . 165

4.5.8 Deduction Instances 166
4.5.9 Activation: Scores and Quality Factors 167

The ACTIVATION operator 168
4.5.10 Control Strategy 169
4.5.11 Optimality and Efficiency 170
4.5.12 The search space and the specialization relation 171
4.5.13 Description of the Operators . 172

The VERIFY operator 173
The SUB GOALING operator 174
The PREDICTION operator. 176
The MERGE operator 176

4.6 Parsing - Memory Structures 178
4.6.1 Introduction.......... 178
4.6.2 Representing DIs with Memory Structures: Some Problems. 178
4.6.3 Canonical Deduction Instances 182
4.6.4 Phrase Hypotheses as Representatives of CDIs 184

Phrase hypotheses and AND-OR trees 185
Phrase hypotheses and contexts 186

4.6.5 Search Space of CDIs and Links Between PHs 188
4.6.6 The VERIFY Operator. . . . 191
4.6.7 The SUBGOALING Operator 193
4.6.8 The PREDICTION Operator 193
4.6.9 The MERGE Operator. . . . 194

How links are exploited. . . . 195
4.7 Parsing - Dealing with Missing Words 197

4.7.1 Introduction........... 197
4.7.2 The Problem 197

Types of frequently missing short words
The basic idea.
The approach: the JVERIFY operator

4.7.3 How JVERIFY Works
Search solving.
Default solving

198
199
199
200
200
200

www.manaraa.com

Table of Contents

Integrating search and default solving.
4.7.4 When to Apply the JVERIFY Operator

4.8 Experimental Results
4.8.1 General Performance Results

The coverage of the language model .
Performance results

4.8.2 Performance of the Short Word Treatment
4.8.3
4.8.4

Optimality and Efficiency .
Some Specific Problems
Excessive gaps and overlaps
Non-optimality
Jolly words

Bibliography

5 Implementation of a Parallel Logic + Functional Language
Gian Paolo Balboni, Piergiorgio Bosco, Carlo Cecchi, Riccardo Me/en,
Corrado Moiso, Giorgio Soft (CSELT)

5.1 Overview ..
5.2 Applications...........
5.3 Languages............

5.3.1 The Language K-LEAF
5.3.2 The Language IDEAL .
5.3.3 Parallel IDEAL and K-LEAF

XIII

202
203
204
205
205
206
207
210
212
212
213
214
215

219

219
220
220
220
222
223

5.4 Models of Computation. 225
5.4.1 Compiling IDEAL into K-LEAF . 226
5.4.2 Execution of K-LEAF: Flattening and Outermost SLD-Resolution 226
5.4.3 Parallel Outermost Strategy 228

5.5 Language Implementation and Execution 229
5.5.1 The Parallel Virtual Machine for K-LEAF 231
5.5.2 Basic Compilation Scheme for Outermost Strategy
5.5.3 The Actual Compilation Scheme
5.5.4 C-Emulation of Sequential K-WAM and Benchmarks
5.5.5 Execution of OR-parallel K-LEAF
5.5.6 Mapping AND-parallelism into OR-parallelism.
5.5.7 The Actual Parallel Implementation.

5.6 Hardware Architecture
5.6.1 ArchitecturalOverview
5.6.2 The Non-Local Communication Network
5.6.3 Performance Evaluation
5.6.4 The Switching Element.
5.6.5 The Physical Prototypes

5.7 Conclusions
5.7.1 Experience with Programming Style.
5.7.2 Speed-up.

Bibliography

232
235
238
239
245
246
247
248
250
252
254
258
259
259
259
261

www.manaraa.com

XIV

6 Conclusions and Future Developments
Alberto Ciaramella, Giancarlo Pirani, Claudio Rullent (CSELT)

6.1 Recognition Algorithms
6.2 Real-time Hardware Implementation
6.3 Understanding Algorithms
6.4 The Role of a Dialogue Manager. . .

Table of Contents

265

265
268
269
273

www.manaraa.com

Chapter 1

Introduction to the Book

Giancarlo Pirani (CSELT)

1.1 Historical Notes

ESPRIT Project P26, "Advanced Algorithms and Architectures for Speech and Image
Processing", started in October 1984, after a one-year feasibility study (since October
1983 to September 1984) in the ESPRIT Pilot Phase, and ended in September 1988 with
an overall effort of about 130 man-years.

Contractors involved were:

CSELT (Prime Contractor), Italy

AEG (now Daimler Benz), West Germany

Thomson-CSF, France

ENSPS (Ecole National Superieure de Physique de Strasbourg), France,
from October 1986

Subcontractors involved were: Polytechnic of Torino, University of Torino, Italy, and
HITECH, Greece.

In addition, Plessey, United Kingdom, participated in the pilot phase, and GEC,
United Kingdom, participated until September 1986.

The main objective of the project was to develop a coherent set of techniques, both
algorithmic and architectural, for speech and image recognition and understanding, and
to validate the performance of these techniques by means of suitable demonstrators, in
order to assess their usability for industrial and commercial applications.

Two basic technical approaches were used: the former consisted in the integration
of low-level, statistics-oriented recognition algorithms with higher-level, knowledge-based
understanding techniques; the latter relied upon an extensive use of parallel processing
architectures.

Although one of the goals of the project was to investigate the feasibility of a com­
monality (at least conceptual) between the speech and image understanding architecture,
there was a distinct activity relevant to the development of the speech processing "branch"
of the system. In particular, it is possible to identify a self-contained "sub-project" which
was devoted to the implementation of a continuous speech understanding system.

The bases of the speech understanding project were laid down in the early 1980s; these
were the years in which the new DARPA project was being launched, after a five-year
hiatus, to re-think objectives and techniques after the results of the first program ended in

www.manaraa.com

2 1 Introduction to the Book

1977 1. In that sense we could exploit the lesson drawn by that experience together with
the background in speech recognition, natural language understanding, DSP hardware,
and parallel architecture available in our ESPRIT Consortium.

This expertise, together with knowledge of the state of the art in the world, has steered
us to choose the large-scale objectives of our project in order not to be too ambitious,
to be realistic enough but to have at the same time sufficiently advanced contents in
algorithms and technology to justify a research effort of five years.

The system we decided to develop had to show the following characteristics:

• accept continuous speech from co-operative speakers

• accept natural language with limited syntactic coverage

• be trainable by the us~r ~th a vocabulary independent of the application

• use a close-talking microphone in a computer terminal room

• exploit a vocabulary of 1,000 words

• work in a constrained semantic domain, relevant to the inquiry of a geographical
database

• achieve nearly real-time performance

One of the basic decisions that was taken at the very beginning of the project was
that the logical architecture of the overall speech understanding system should rely upon
a clear separation between low level (recognition stage) and high level (understanding
stage). This is shown in Fig. 1.1, which gives also some anticipation of the general
structure of the system.

This type of architecture was decided also in the light of the difficulties experienced
during the first ARPA project, mainly stemming from its integrated approach to the
problem of speech understanding. In fact, one of the major advantages that we expected
in decoupling the problems was to emphasize the activities for improving the performance
of the two blocks separately.

The aim of the low-level stage is to find out a lattice of word hypotheses; each item of
this structure consists of an element of the lexicon (word), its acoustic likelihood, and its
estimated temporal boundaries. The lattice is the interface between the low-level speech
processing and the high-level linguistic analyzer. The main goal of the understanding
level is to process the lattice of word hypotheses and to produce a representation of the
utterance meaning. The meaning representation is used to access the database and to
generate the answer to the inquiry in natural language.

According to this decoupling philosophy a big effort was made to obtain a lattice as
accurate as possible in order to improve the overall performance of the system; this in­
volved a deep study of the acoustic-phonetic decoding techniques to obtain highly reliable
scores for the word hypotheses, with the principle that what is lost at the lower level can
hardly be recovered by the higher one.

The separation between the two levels of processing has also implied a corresponding
architecture from the hardware viewpoint, as Fig. 1.1 shows. This allowed us to define the
global hardware structure of the recognition stage, which was based upon two different

ID.Klatt, "Review ofthe ARPA Speech Understanding Project", J. Acoult. Soc. Am., vo1.62, no. 6,
pp.1345-1366, Dec.1977.

www.manaraa.com

1.1 Historical Notes 3

Figure 1.1: Global architecture of the speech understanding system.

www.manaraa.com

4 1 Introduction to the Book

types of boards, expressly developed for the project: the former performs the AID con­
version of speech together with analog amplification and filtering; the latter is equipped
with a DSP (TI TMS32020) and can perform both digital signal processing and pattern
matching operations. In this way we could concentrate from the beginning of the project
on the most appropriate structure of the front-end processor to produce the lattice in real
time.

On the other hand, the high-level algorithms of the understanding stage could be
implemented on a LISP Symbolics workstation, with a view to improving its efficiency
through a re-design and a re-writing in C language, and to studying the feasibility of a
parallelization of the algorithms that would be suitable for implementation on the parallel
architecture being developed.

1.2 Overview of the Book

The objective of this book is to describe the activities carried out in the part of ESPRIT
P26 devoted to developping the speech understanding system, and to present the results
that have been obtained.
The main body of the book is divided into four main chapters that address the four differ­
ent tasks (or work packages) of the project workplan that had to be carried out to develop
the final system: recognition algorithms, real-time hardware implementation of the recog­
nition stage, understanding algorithms, and parallel languages for parallel architectures.
For this reason the chapters are to some extent self-contained and autonomous.

Chap. 2 gives a detailed description of the recognition algorithms developed with the
main objective of designing an efficient technique to extract an accurate lattice of word
hypotheses from a continuously spoken utterance.

As the size of the vocabulary was medium-large, the first approach tried was to exploit
a two-step strategy: the first step consisted in reducing the whole lexicon to a subset
through a segment classification into gross phonetic classes and a subsequent lexical access;
the second step was to give an acoustic score to the surviving words belonging to the
subset. Although a partly knowledge-based approach was attempted, relying upon some
skill at the University of Torino, the approach finally chosen was completely statistical.
In this way the Consortium could benefit from the expertise of AEG in statistical pattern
recognition for gross phonetic classification, of the Politechnic of Torino for lexical access,
and of CSELT for automated training of sub-word units HMMs (Hidden Markov Models)
and their use in the recognition process, through a suitable version of Viterbi decoding.

In the first phase of the project, this approach proved itself quite effective for a large­
vocabulary isolated recognition task; therefore the first outcome of this research was an
isolated word recognition system with vocabulary sizes in the range of 1000 - 20000 words.
This was a quite interesting by-product of the project, but when we switched to the real
goal of the project (1000 words and continuous speech) an extensive experimentation
showed an important result: even if very efficient control strategies were invented to per­
form the hypothesization and the HMM scoring processes in an integrated and interactive
way, the one-step approach was still slightly more appropriate in terms of accuracy and
computation time.
In fact, the size of about 2000 words seemed to be the threshold that has to be exceeded
to make the two-step approach become more convenient.

www.manaraa.com

1.2 Overview of the Book 5

All the choices relevant to the hardware architecture of the recognition stage are
described in detail in Chap. 3.

The general philosophy was to have an architecture based upon specifically developed
boards. These boards had to exhibit enough computational power together with the
possibility of being connected as intelligent peripherals to a commercially available family
of microprocessor boards (Motorola 68020) through standardized VME and VMX buses.
This type of architecture showed a noteworthy modularity that made it suitable for tasks
of different complexity and computational requirements.

The speech acquisition board was designed by AEG, while the DSP-based ones were
developed by Thomson-CSF. The choice of the TMS32020 processor was determined by
its larger addressable area with reference to both internal and external memory, at th~
time when the selection was made (1985).

With the exception of the classifier module, all the firmware implementing the recog­
nition stage was written by CSELT, which also took on the task of integrating all the
hardware blocks into a unique system.

Whereas the recognition stage was the result of a joint effort of AEG, CSELT, and
Thomson-CSF, the understanding-stage algorithms and architectures were developed al­
most entirely by CSELT.

As Chap. 4 describes, the philosophy that led to the developed understanding algo­
rithms was to follow a knowledge-based approach. In fact, this approach was felt more
suitable for the integration of syntax and semantics as well as for the achievement of a
certain commonality between speech and image architectures.

When the project started we believed that we could take advantage of the new repre­
sentational tools developed after the end of the ARPA project, that were more powerful
and expressive than context-free grammars, even if more complex. In this way it was
possible to exploit the language constraints more efficiently for a system with its purpose
not limited to recognition, but including also meaning comprehension.

Conceptually, the basic philosophy was to start from a state-of-the-art system for
written natural language understanding and to extend its capabilities to deal with word
lattices instead of definite word sequences.

In fact, the role of the understanding stage is to parse the word lattice to find the most
likely word sequence and to provide a formal representation of its meaning. We chose to
have the parsing strategy based upon a score-driven search that is capable of avoiding the
bottlenecks that are likely to arise when a lattice with some low-quality hypotheses is to
be processed. In this way the system can evolve better towards applications where the
quality of speech is impaired or speaker independence is required.

The developed approach started from the decision to use two separate representa­
tions, for semantic and syntactic knowledge respectively. These representations are then
combined into common parsing rules through an automatic compilation which exploits
also the property that the "caseframe" formalism, chosen for semantics, is characterized
by structures which are similar to those of the "dependency grammar" formalism chosen
for syntax.

An additional characteristic of the developed parser is its ability to perform correctly,
when necessary, without having to rely upon hypotheses regarding words that are both
short and semantically irrelevant, like determiners and some prepositions.

Finally it was decided to derive a formal and non-ambiguous representation of the

www.manaraa.com

6 1 Introduction to the Book

meaning of the spoken sentence in a connected caseframe format at the end of the parser
process, which is used both for completing word recognition and understanding.

One of the most challenging objectives of the project was also the design of a parallel
architecture that would allow the understanding task to achieve real-time performance,
both for speech and image. Actually, at the end of the project the parallel architecture was
available, but there was not enough time to insert the speech understanding algorithms
into such an architecture.

Although this book is devoted essentially to the description of the speech understand­
ing system, we decided to make it more complete, including also a chapter which describes
the basic principles of the design of the parallel architecture, focusing on the specification
of a parallel symbolic programming language that permits its efficient exploitation.

Therefore, Chap. 5 points out how the specific objective of the activity on the archi­
tecture was to show the feasibility of a parallel machine with about 1 GIPS, medium cost,
small volume, standard paackaging, and no communication bottlenecks; from the software
viewpoint the goal was to show the feasibility of a problem-oriented parallel PROLOG on
a distributed-memory machine, parallelizing significant understanding tasks.

From the technological point of view, the choice of INMOS transputers was made
in order to have a very modular, powerful structure based upon a network of these PEs
(Processing Elements) with an outstanding ease of communication.

www.manaraa.com

Chapter 2

The Recognition Algorithms

Luciano Fissore (CSELT), Alfred Kaltenmeier (Daimler Benz),
Pietro Laface (Politecnico di Torino), Giorgio Micca (CSELT),
Roberto Pieraccini (CSELT)

2.1 Introduction

Subtask 2.1 of the P26 project was devoted to the study of the problems related to the
development of the front-end of a speech understanding system. In the early stages of
the project it was decided to separate the front-end, referred to in the following as the
recognition module, from the understanding module, that deals with syntax and seman­
tics. This decision was drawn taking into account several considerations mainly based on
a practical point of view: the research groups working on Subtask 2.1 were at their first
experience with speech understanding systems and their background was mainly in devel­
oping systems for small-vocabulary isolated and connected word recognition. Approaching
the speech understanding problem required a strong effort both in knowledge acquisition
and software development. For instance, methodologies for dealing with phonetic tran­
scriptions of lexical items had to be developed from the beginning. More important was
the lack of any practical feeling about the problem. Nobody knew (and very few in the
world did at that time) what performance could be realistically achieved using a 1000-
word vocabulary with a system based on sub-word unit modeling, hence which integrated
strategy should be planned to attain a reasonably good understanding of the spoken sen­
tences. The choice of a two-module system with a one-way interaction seemed the most
appropriate for starting to acquire the proper knowledge on the problem. Besides, as peo­
ple working on the two modules belonged to different groups and used different techniques
as well as different programming languages (stochastic modeling and FORTRAN for the
recognition group, knowledge-based parsing and LISP for the understanding group), the
best solution looked like the one by which the development of the two modules did not
have to suffer from unavoidable mutual time dependencies. The decision to consider the
recognition and the understanding as two clearly separated modules with a bottom-up
interaction was followed by the decision to make a time-wise separation among the two
sub-systems. The understanding process should start only when the sentence has been
completely analyzed by the recognition module. Again, it is advisable to stress the fact
that such a strategy could not be the most suitable for a speech understanding system.
It is well known that perceptual experiments, like those reported in [38], demonstrate, for
example, that the linguistic analysis of an unknown utterance by human beings begins as
soon as the first words have been perceived but, again, the practical choice of designing,

www.manaraa.com

8 2 The Recognition Algorithms

testing and improving each module separately was considered more realistic. Furthermore
we had to avoid the risk of replicating some errors made in the late ARPA SUS project
[27] where most of the systems never met their project goals and where most of the care
was taken in the design of the interaction between the modules rather than in obtaining
the best performance by every single subsystem.

Once the kind of interaction between recognition and understanding was decided, it
had to be taken into consideration which form such an interaction had to have. Given the
above preliminary remarks we considered only two possible reasonable forms: a string or a
lattice of word hypotheses. The first solution was attainable by implementing a standard
decoder [23] that, given an acoustic/phonetic model of the words, yields the best sequence
of lexical items according to a defined optimality criterium (like for instance maximum
likelihood). This solution presents some disadvantages when used within a speech under­
standing module. First it must be noticed that every error generated by the recognition
module (substitution, deletion or insertion of a word) is propagated to the understanding
module without any possibility of being recovered. Hence the accuracy of the recognition
part must be high enough to obtain a good understanding rate; this can be achieved by
introducing some kinds of linguistic constraint at the acoustic/phonetic decoding level.
Linguistic constraints can be used either under the form of a regular grammar or of a
n-gram stochastic model, like for instance word trigrams [24]. The regular grammar has
the disadvantage of being very rigid about the allowed sentences, while the trigram model,
to be effectively usable, needs an enormous database of text for the trigram probabilities
to be estimated. Moreover a linguistic constraint at the recognition level represents a
replication of a knowledge source already present in the understanding module. The sec­
ond solution, that interfaces the recognition and the understanding subsystems in terms
of a lattice of words, seemed to be a more general approach that includes, as a byproduct,
also the best-string-of-words solution. A lattice of word hypotheses is a database whose
items consist of 4 pieces of information: vocabulary word identifier, time location of the
hypothesis, explicated into beginning time and ending time, and its likelihood score. A
sample word hypotheses lattice is shown in Figure 2.1. This strategy is in compliance
with the generally adopted criterion in speech recognition that attempts to delay every
decision to the moment when enough knowledge is available. Furthermore, if the lattice of
words is properly computed and relevant hypotheses are not purged before they are given
to the understanding module, it does not need to be built using linguistic constraints. The
use of linguistic constraints during the generation of the lattice simply changes the scores
of the word hypothesis (again if no purging is done). That operation can be done at the
understanding level, giving the very same results but avoiding an unnecessary duplication
of the knowledge sources.

An additional issue of the overall project was system effectiveness. Good performance
can be obtained only as a result of intensive experimentation. When the response time
of an experiment exceeds reasonable values, tuning a module or comparing different tech­
niques becomes impossible. Thus, most of the choices, like discrete density HMMs versus
continuous density ones or lexical preselection based on coarse phonetic classes, reflect
the need to trade higher accuracy for reasonable computational load. Furthermore, as
a real-time system for continuous speech was the target of the project, several design
choices were made on the basis of the technology at hand.

Although the goal of this Sub-task was continuous speech recognition on a lOOO-word

www.manaraa.com

2.2 System Description 9

Glikitl 1Ittt:'t1 bagna rr.tr.t.i
Quale iseo !l!l.. ~ nato rienza
gual ~ fiume almha'II'J ~o

valli giglio !l!ti.. dalie ~ l:!imPo
e.2.- lesina !!&. dai ~ riva

2&. umbri dal ~ ~
!l!!L ~ etna amato uo.C-

guanti :,iinni getta ~trigno
acgua esce £b!! !.Ul.iL. !!lliL
guante isole adda ~ ~

avisio che !!!2L- alIa --1!L
agli ~ tl!lli!..- Q.2& provincia

cusna mesima elba arno ~ r:um...
zona degli iunghe WlL. tra wm..
§.!!Q ~e um!2rll !J:WlSZ daI.-

negli neg Ii maggiori ~
~:iiDg !9!L ww..... h:tj[Q

Figure 2.1: A sample word hypotheses lattice

vocabulary, nevertheless many resources were devoted to the task of isolated word recog­
nition because most of the problems are common. It has been demonstrated that the
techniques developed for the isolated word task can be extended to continuous speech.
Hence particular attention has been devoted to the use of algorithms that do not take
advantage on the constraints given by the simpler isolated words recognition task. After
the above discussion we must conclude that the architecture of the speech understanding
system developed in P26 is not to be considered as "the solution" to the speech under­
standing problem, but rather as a test-bed of different modules and algorithms for the
investigation on two major problems of speech understanding: how to generate wordhy­
potheses in continuous speech and how to parse a lattice of scored word hypotheses. These
modules can be considered as a baseline for building more sophisticated architectures and
control strategies.

2.2 System Description

In the automatic speech recognition area significant results have been achieved in research
projects by using pattern recognition and stochastic modeling methods [33]. Following
these paradigms, several commercial products have been developed and marketed that
perform very well for simple tasks and in constrained conditions (single speaker, limited
vocabulary, isolated words) [6, 37]. Nevertheless, several difficult tasks and applications
still exist that need further research and engineering efforts to achieve systems that are
really useful and widely acceptable by the end users.

www.manaraa.com

10 2 The Recognition Algorithms

Office dictation systems, voice-activated telephone dialing and information access with
large vocabulary are emerging as realistic and useful applications.

These applications share the need of fast accessing large vocabularies of several thou­
sand words, a difficult task even for speaker dependent systems. As the number of words
to be discriminated is large, it is not practically feasible to collect thousands of templates,
thus it is mandatory that lexical knowledge is built from a phonetic transcription of the
orthographic form of the words. To this aim, sub-word recognition units must be defined,
that can be trained from a reasonably small size learning vocabulary and used as building
blocks for the words of any lexicon. Furthermore, in order to reduce the computational
complexity of the pattern matching process, the search for the best matching words must
be as far as possible focused. The reduction of the searching space can be obtained by
carefully exploiting the structural constraints that a lexicon imposes at the phonologic
level [49, 43] by using the hypothesize and test paradigm. According to this strategy,
elsewhere called the two-step approach, a vocabulary subset to which the utterance is
estimated to belong is hypothesized on the basis of a description that allows a fast search
to be performed. Second, a more detailed and time-consuming verification process is ac­
tivated only for words belonging to that subset [24, 26, 29, 21]. Different approaches
can be used in the preselection step. The search can be carried out for all words in the
vocabulary through a very simple and approximate description designed on the basis of
heuristic and pragmatic knowledge [26]. As this kind of approach relies on the detection
of word boundaries, it cannot be directly applied to continuous speech.

A less heuristic method is reminiscent of perceptual models of word recognition such
as those introduced in the Cohort Theory and in the Phonetic Refinement Theory [43].
It avoids matching all words by characterizing each lexical entry by means of a partial
phonetic description, so that acoustically similar words are clustered together [22]. From
the automatic recognition point of view this is important because broad phonetic classes
can be hypothesized more reliably than detailed phonetic segments. The effectiveness of
the latter approach, in terms of preselection capability, has been evaluated by examining
the statistical properties of large vocabularies under the assumption of a correct partial
description of the words [54,47,16,8]. For instance, as far as Italian language is concerned,
describing a 13747 word vocabulary by using only six broad phonetic classes, 7225 words
can be uniquely identified, while the maximum and average size of the subset of words
bearing the same description is 34 and 1.5 respectively [20]. The results of these statistical
analyses, however, do not take into account segmentation and classification errors. These
errors depend on the inherent variability in speech and occur even if the acoustic-phonetic
module must discriminate among a limited number of gross phonetic categories. Moreover,
lexicon specifications made on the basis of a reduced set of symbols can lead to small
redundancy, that is, a small distortion occurring on a string of symbols corresponding
to a set of words is likely to perfectly fit the representation of a different set of words.
Lexical access must be performed, therefore, through error correcting procedures that face
the problem of high confusability of partial descriptions of words by generating a suitable
set of likely candidates. Although word subsets larger than those predicted by an error
free analysis are hypothesized, the results of several experiments, referring to different
languages [31, 52, 47, 22, 7] show the substantial preselection capability of the method
even in the presence of classification errors.

This hypothesize and test paradigm has been chosen first for developing a speaker-

www.manaraa.com

2.2 System Description 11

dependent isolated word recognition system with a vocabulary ranging from 1000 to 20000
words. Then the possibility has been analyzed of using such a preselection stage in a
continuous speech recognition system. An original strategy has been devised for using
the two-step approach in the word lattice generation, even if, in the final demonstrator,
the single-step approach proved to be more effective due to the low size of the application
vocabulary (1000 words). Nonetheless we will report in detail the work on the the stage
approach because we think it is of practical interest when the size of the vocabulary
Increases.

In the two-step approach a first words preselection is carried out by segmenting and
classifying the input signal in terms of broad phonetic classes (plosives, fricatives, vowels,
etc.) To achieve high performance, a lattice of phonetic segments is generated, rather
than a single sequence of hypotheses. The lattice can be organized as a graph in a
structure referred to as "micro-segmentation". Words are hypothesized by matching the
micro-segmentation graph against the models of all vocabulary words. A model is a
phonetic representation of a word in terms of a graph accounting for deletion, substitu­
tion, and insertion errors. A modified Dynamic Programming (DP) matching procedure
(three-dimensional DP or 3DP) gives an efficient solution to this graph-to-graph matching
problem.

Hidden Markov Models (HMMs) of sub-word units are the basis of a more detailed
knowledge in the verification step. The word candidates generated by the previous step
are represented as sequences of diphone-like sub-word units, and the Viterbi algorithm
evaluates their likelihood by observing sequences of labels, associated with each centisec­
ond of the input signal, obtained by vector quantization of 18 cepstral parameters.

To reduce storage and computational costs, lexical knowledge is organized in a tree
structure where the initial common subsequences of word descriptions are shared, and a
beam-search strategy carries on the most promising paths only.

This strategy of lexical access has been applied to vocabularies of different size and
complexity. Large-scale experimentation has been possible because all models can be
trained without hand labeling or segmentation, allowing a ready adaptation to new vo­
cabularies and to new speakers.

2.2.1 System Overview

The modules developed at the recognition level can be divided into two groups: those in­
volved in the development and training phase and those involved in the recognition phase.
Some modules, like for instance feature extraction, are used in both phases. Figures 2.2
and 2.3 give sketches of the two phases. The FEATURE EXTRACTION module is
in charge of computing a parametric representation of speech at each 10 msec frame.
The VECTOR QUANTIZER additionally reduces the redundancy of the patterns by
associating a symbol with each speech frame through a codebook of spectral vectors.
The PHONETIC CLASSIFIER associates with each frame one or two coarse phonetic
labels, while the PHONETIC SEGMENTER detects segments belonging to a given
phonetic class and represents them through a lattice of phonetic hypotheses.
The LEXICAL ACCESS matches the segment lattice with the coarse phonetic repre­
sentation of the words that are arranged into a PCL tree (Phonetic Class Lexicon) and
gives a list of candidate words.

www.manaraa.com

12

CODEBOOK
TRAINING

FEATURE
EXTRACTION

TRAINING
SPEECH

PHONETIC
CLASSIFIER

2 The Recognition Algorithms

WORD
TRANSLATOR
& COMPILER

TRAINING
DICTIONARY

MATCHING
COSTS

ESTIMATION

Figure 2.2: Modules active in the training phase

INPUT

FEATURE
EXTRACTION

SPEECH L-___

WORD
--+/ TRANSLATOR

& COMPILER

ORTHOGRAPHIC
DICTIONARY

VECTOR
QUANTIZER

PHONETIC
SEGMENTER

PCL
TREE

COMPILER

HMM
VERIFIER

LEXICAL
ACCESS

Figure 2.3: Modules active in the recognition phase

OUTPUT
WORD

www.manaraa.com

2.2 System Description 13

The WORD TRANSLATOR gives a phonetic representation of words starting from
the orthographic description, while the WORD COMPILER gives a word representa­
tion in terms of sub-word units.
This representation is used to build the PCL tree, by the PCL TREE COMPILER
or a HMM (Hidden Markov Model) state tree through the HMM TREE COMPILER
sil1ce each sub-word unit is acoustically represented by a HMM.
The HMM VERIFIER performs a matching between the symbols given by the vec­
tor quantizer and the HMM state-tree representation of the words. Finally the CON­
TROLLER controls the information exchange between the lexical access and the HMM
verifier. The information flow is bidirectional between the modules in the sense that,
depending on the application (isolated words or continuous speech), constraints can be
propagated from the lexical access to the verifier and vice versa.

Training the system from scratch requires four steps:

• Codebook generation: the Feature Extraction module performs a Mel-based cep­
stral analysis of the signal. The signal is collected through a head-mounted micro­
phone, low-pass filtered at 6 KHz, and sampled at a 12 KHz rate. An FFT analysis
is performed on each 10 ms frame, over 20 ms overlapping Hamming windows. At
each frame, a cosine transform is applied that produces a vector of 18 cepstral coef­
ficients. A simple endpoint detector extracts the portion of the signal corresponding
to the uttered words on the basis of the energy of the frames. A fixed amount of
the initial and trailing silence is kept to prevent occasional deletion of initial and
final weak consonants. The Vector Quantization (VQ) module associates with every
speech frame a label belonging to a finite alphabet of acoustic symbols (codebook)j
these symbols are used as an observation sequence by the HMMs training and verifi­
cation modules. The VQ codebook is generated using the LBG clustering algorithm
[35,4,3]. All experiments were performed using 7-bit speaker-dependent codebooks
(128 codewords).

• Sub-word units training: the Word Translator rewrites, according to a set of
phonologic rules, the orthographic description of a each word into a sequence of
sub-word recognition units. This sequence is then compiled, by the Word Compiler
module, into its corresponding HMM chain that is trained through the Forward­
Backward algorithm [23]. The transition and emission probabilities of each sub-word
unit model are obtained by processing all words of a properly designed training vo­
cabulary. Trained units can be used as building blocks of the words of any vocab­
ulary, and the Viterbi algorithm can estimate the likelihood that a given utterance
corresponds to a word in the vocabulary. It is worth noting that none of these pro­
cedures need labeled speech, or human interaction. On the contrary, an important
byproduct of stochastic modeling of sub-word units is that a speech database can
be automatically segmented and labeled. In fact, once the models are trained, the
Viterbi algorithm can estimate the best path through the states of the HMM chain
corresponding to a known utterance, and the boundaries of the units composing the
word or the sentence can be detected by a traceback procedure.

• Phonetic Classifier training: this module computes, from a previously labeled
speech data base, the parameters of the frame by frame Phonetic Classifier. The

www.manaraa.com

14 2 The Recognition Algorithms

Phonetic Classifier estimates the likelihood that a cepstral vector belongs to a set of
broad phonetic classes .

• Estimation of Phonetic Segments matching costs: adjacent frames with the
same phonetic label are collapsed into segments by the Phonetic Segmentation mod­
ule. A statistical estimation procedure generates the costs for the substitution, in­
sertion and deletion of segments (matching costs). As will be detailed in Sect. 2.3.1,
this module describes an utterance in terms of a lattice of phonetic hypotheses rather
than by a single sequence of segments.

2.2.2 Feature Extraction

The selection of a good parametric representation of acoustic data is a crucial task in
the design \?f any speech recognition system. Most parametric representations described
in the literature may be divided into two groups: those based on the Fourier spectrum
and those based on the linear prediction spectrum. The first group comprises filter bank
energies and cepstral coefficients derived from those energies. The second group includes
linear prediction coefficients (LPC). In [13) a number of parametric representations have
been compared, and a clear pedormance advantage of the Mel-based cepstrum over all
other parameter sets has been demonstrated.

2.2.3 Mel-based Spectral Analysis

A Mel-based spectral analysis is pedormed using a filter bank centered on the criti­
cal bandwidths of the human auditory system. Acoustic information, at the primary
perceptual level, is analyzed into so called frequency groups. These groups are nearly
logarithmically spaced, starting with small bandwidth at low frequencies. The spacing of
these frequency groups defines a scale for the frequency selectivity of the human ear and
is called the Mel-scale.
The frequencies and bandwidths of the 18-channel filter bank used in this project ([4))
are illustrated in Figure 2.4 and Table 2.1 respectively.

Speech signal is collected through a close-talk microphone and linearly digitized with
a 12-bit accuracy at a 12 kHz sampling rate. Spectral analysis is pedormed every 10 msec
using Fast Fourier Transform over 128 samples with an overlapping Hamming window
of 256 samples. Finally, cepstral coefficients Ci are computed according to the following
formula:

Ci=I:L09(Ej)'COSi(j-~); , i=l, ... ,NF-l.
j=1 F

(2.1)

where N F is the number of filters and Ei are the log-energies of each band.
Figure 2.5 further illustrates the Mel-based analysis. The first plot is related to

the power density spectrum of a vowel segment computed using FFT, and the second one
shows the corresponding Mel-based approximation. Channel vectors are not optimal para­
metric representations of speech signals, because their components are highly correlated.
The first cepstral coefficients have a straightforward physical meaning: Co is proportional
to the sum of the logarithms of the energies of each band, while C1 represents the ratio

www.manaraa.com

2.2 System Description

Band No. Freq. Cutoff (Hz) Central Freq. (Hz)
1 187 280 229
2 280 374 324
3 374 476 422
4 476 588 529
5 588 710 646
6 710 850 777
7 850 1009 926
8 1009 1186 1094
9 1186 1382 1281
10 1382 1606 1490
11 1606 1868 1732
12 1868 2167 2012

f---
13 2167 2522 2338
14 2522 2942 2724
15 2942 3456 3189
16 3456 4110 3769
17 4110 4950 4510
18 4950 6071 5482

Table 2.1: Sub-bands of the filter bank according to Mel scale

o

~ -10
al
"0

« -20

-30~~--~L-~~~~~~~~-L~~~~~LU~~~~~

0.1 10
FREQUENCY [kHz)

Figure 2.4: Frequency characteristics of a Mel-based set of filters

15

www.manaraa.com

16 2 The Recognition Algorithms

-10 -10

......
...... co
co "'0
"'0

......
...... ex:
ex: -30 w -30
w 3
3: 0
0 Il.
Il.

-50 -50
0 0.2 0.4 0 0.2 0.4

NORM.FREQUENCY NORM. FREQUENCY

Figure 2.5: FFT and Mel-based vowel spectra

between low and high frequencies. Furthermore, cepstral coefficients C l to NF -1 do not
depend on the frame energy. A two-dimensional histogram of the first and the second
coefficients, computed over 5 minutes of speech produced by an adult male speaker, is
shown in Figure 2.6.

Cepstral coefficients obtained by means of the DCT transform have the interesting
property of being ordered according to their variance, with the greatest variance coming
first. This allows higher-order coefficients to be discarded without affecting system per­
formance, since low variance coefficients convey correspondingly low information about
the signal. Channel and cepstral variances are compared in Figure 2.8. A plot of the
cumulative variance of the cepstral coefficients (a) and of the recognition rate (b) for the
difficult task of minimal pair discrimination [11] is shown in Figure 2.7. C l accounts for
42 % of the global variance, C2 for 18 %, Cs for 12 %. More than 90% of the variance is
accounted for by the first 9 cepstral coefficients.

2.2.4 Vector Quantization

Vector quantization is an efficient technique of data reduction that still maintains the
information needed to characterize different sounds.
Vector quantization allows an input vector x = (Xl, X2,"" Xk) to be replaced by a vector
Y = (Yl, Y2, ... , Yk) drawn from a finite reproduction alphabet of N elements A = (Yi : i =
1,2 ... N) (the codebook), that minimizes a given distortion measure.
As a matter of fact each vector of cepstral parameters is compared with a finite set
of reference vectors: the nearest one, according to the distance measure, is chosen to
represent the input vector. In this way the speech signal can be represented by means
of a sequence of "codewords", namely labels related to the reproduction vectors. If the
dimensionality of the reproduction vectors is equal to one, the technique becomes the well
known scalar quantization.

www.manaraa.com

2.2 System Description 17

6

COEFFICIENT C,

-6

Figure 2.6: Histogram of the first and second cepstral coefficients

100r---------------------~~----------~

%
90

80

70

60

50

40

3 5 7 9 " 13 15 17 19

CEPSTRAL COEFFICIENTS

Figure 2.7: Cepstral variance and recognition rate

www.manaraa.com

18 2 The Recognition Algorithms

4 ~r-------------------------------'

N

<0

W

3

il 2
<
a:
~

4

CHANNEL COEFFICIENTS

CEPSTRAL COEFFICIENTS

8 12 16

COEFFICIENT NO.

Figure 2.8: Channel and cepstral variances

Two factors affect the quantization noise, and consequently the distortion in the signal
representation: the first one is the codebook design that must take into account the
statistical distribution of the input vectors, while the second is the choice of the spectral
distance.
Whenever detailed statistical information about the distribution of input vectors is lacking
(as it happens to be in the speech signal case), the codebook can be generated by a training
procedure, which requires a speech data-base usually obtained from the pronunciation of
a generic text.
The LBG algorithm for code book generation [35] is a generalization of the "K-means"
algorithm, and proceeds by iterative steps: first the centroid of the whole speech data­
base is computed; then a perturbation is applied to the centroid vector to obtain two
new vectors, which are used to code input vectors according to the minimum distance
principle. The two centroids are iteratively adjusted until a given minimum distortion
threshold is reached: at this stage an optimum codebook of two (I-bit) dimensions is
obtained. Each centroid is again perturbed, and a 4-level codebook is computed.
The procedure continues until a codebook of the desired dimensions is generated. Many
distortion measures can be chosen: from a mathematical point of view, they must be real
nonnegative functions. The mean square error measure is commonly chosen, defined as
the square of the Euclidean distance between two points in the cepstral vectors space.
Codebook sizes for speech applications range from 64 to 256 codewords; 128 is the size
selected for the present system.
Vector quantization distortion as a function of the number of cepstral coefficients for
codebooks of different sizes is shown in Figure 2.9.

Codebook generation is a rather complex and computationally expensive procedure;
therefore, a speaker-independent codebook is preferable, and statistically representative
material extracted from many speakers must be collected.

www.manaraa.com

2.2 System Description 19

0.8

• N=2
•

0.6
N=4 - I • • •

a:

~
0 a: N=8 a:
w

~ ~ ~ ~
:i. 0.4
a:
0 z . ::f

0.2 N=128]
N=64

0
0 4 8 12 16

NUMBER OF COEFFICIENTS

Figure 2.9: VQ distortion as a function of the number of cepstral coefficients

An efficiency measure for codebooks has been defined. Given the phonemes alphabet
P = (Pl>P2," ',PN,.) and the codewords alphabet C = (C1,C2," .,CN.), an "efficiency"
measure of a codebook is defined as

H(P) - H(PIC)
e = H(P) (2.2)

where H(P) = 2::;1 prob(p,.) logprob(p,.) is the "a priori" entropy ofthe phonemes (with
respect to a given speech training data-base) and H(PIC) = - 2::~1 prob(c,.) H(Plc,.) is
the entropy conditioned to the codebook and H(Plc,.) = - 2:~1 prOb(Pilc,.) logprob(pilc,.)
is the entropy of the phoneme alphabet given a codeword.
Codebook efficiency is 0 if H(PIC) = H(P), that is if each codeword carries no informa­
tion about the phoneme, while it reaches the value of 1 when each codewords univocally
identifies,the phoneme (actually these situations are never reached). Figure 2.10 plots the
efficiency of multi-speaker codebooks as a function of the number of cepstral coefficients
used for generating them.

Interestingly enough, a strong correlation can be observed between the efficiency (a)
and the recognition rate (b), so that the influence of a codebook on recognition perfor­
mance can be directly estimated from its efficiency score.

2.2.5 The Phonetic Representation

A vocabulary, either for recognition or training purposes, is generally available only in its
orthographic form, hence the way we use to write the words using the alphabet letters.
Less often the standard phonetic form is available; for instance one can have an on-line,
machine-readable dictionary with the possibility of accessing the pronunciation field, but
that does not solve the problem of verb inflections, proper nouns and special words that

www.manaraa.com

20 2 The Recognition Algorithms

80~------------------------------~.8

___ --.' ~RECOGNITION

70 .7

S 60 .6 >-
~ I­...

Z

§
:ll
lit 50

40

w ...
u ...
II.
II.

.5 W

.4

30 .3
19 17 15 13 11 9 7 5 3

'* PAR.

Figure 2.10: Efficiency of codebooks

do no appear in a standard dictionary (for instance jargon words). Hence it is of primary
importance for doing research on large vocabulary speech recognition to have an efficient
mean for handling the phonetic form of words given their orthographic description. Ad­
ditionally, the phonetic form must be translated into a recognition-unit form that is the
way a word is composed in terms of the choosen recognition units; one can simply use
the phones as units, hence the last translation is trivial, but if the researcher wants to
take into account more complex coarticulation phenomena and if he wants to experiment
with different ways of doing that, he needs to have available a tool for defining new units
starting from the phonetic description of words.

So we came to a basic representation of words lying over two levels of description.
The first is the standard phoneInic form of words along with additional forms accounting
for inter-speaker variations due to different dialects and speaker habits. The second level
is a description of each phoneme by means of smaller units called Underlying Phonetic
Structure (UPS); they are mainly stationary segments (with a broader meaning of the
word "stationary") and transitions. For instance the phoneme /k/ can be defined as a
sequence of silence (the stationary portion) and transition to the following phoneme. The
absence of the transition between the previous phoneme and silence means that in our
unit set that event is not relevant to the recognition of /kf. Further, a set of contextual
rules handles the final transcription of a word in terms of stationary and transitional
units.

This development system easily allows the definition of different unit sets as phonemes,
classical diphones and other.

Phonetic transcription

The first step for transforming words into recognition units is the transcription between
the orthographic form to the phonetic one. For languages like Italian the transcription

www.manaraa.com

2.2 System Description 21

keyboard IPA keyboard IPA
a a u 1L I

I

b b v v I
d d z Z I

e e - silence
f f 9 1/
g 9 L A
i i M 1/
J J N n
k II: & J
I 1 <t&> tJ

m m <dZ> de
n n <dz> dz
0 0 <ts> ts

P P w w
R r (c
s s) o.

t t

Table 2.2: The Italian phonetic alphabet

is quite straightforward and a single program, possibly including an exception table,
can do the work without any manual interaction. Some problems arise with allophonic
variations of phones due to regional differences in pronunciation of words. For instance
in Italian, the letter s is sometimes pronounced as the phoneme /s/ and sometimes as
the phoneme /z/ depending on the speaker provenience. In those cases we introduced
multiple transcriptions of the same word; for example, the Italian word CASA (house)
has two phonetic transcriptions that are /lcaza/ and /lcasa/. Finally we chose an ASCII
phonetic alphabet where every phone is represented by a sequence from one to 5 ASCII
characters that is reported in Table 2.2 along with the IPA (International Phonetic
Alphabet) symbols.

Also, a semicolon (;) following a consonant means that consonant is a geminate cluster,
like /t/ in the word OTTO (eight, /ot; o/). ,

Underlying phonetic structure

As said before, the lower level of phonetic description consists in the so called Underlying
Phonetic Structure (UPS); the idea is to transcribe each phoneme into a sequence of
elements (Underlying Phonetic Elements or UP E) which, roughly speaking, show uniform
acoustic characteristics. Incidentally, the alphabet used to describe UPS is the same as
the phonetic one: while at the higher phonetic level each symbol represents a whole
phoneme, at the lower UPS level a symbol represents a phoneme portion. The plus (+)
symbol has the meaning of transition from the preceding or to the following phoneme;
so writing a = +aaa+ means that the phoneme a (on the left of the production) can be

www.manaraa.com

22

&=&
(= +((
) = +))

9=n
L = L L+
M= n

N = NN+
R = +R R R R+
a = +a a
b = b b+
d = b d+
e = +e e
f=f
g = b g+
i = +i i
j = +i i i+
k = - k+
1 = +11
m=m
n=n
0= +00

p = - p+
s = +s s
t = - t+
u = +u u
v = +v v v+

w = +u u u+
z = z
L; = L; L;+
d; = b; d;+
n; = n;
N; = N N;+
f; = f;
gi = b; g;+
Pi = - p;+
b; = bi b;+

2 The Recognition Algorithms

<dz>; = <dz>; <dz>;+
<ts>; = <ts>; <ts>;+
s; = +s; s;
k; = - k;+
t; = - tj+
<t&> = <t&> <t&>+
lj = +1; 1;
m;=m;
v; = +Vj Vi v;+
<t&>j = <t&>; <t&>;+
&; = &j
<dZ>; = <dZ>; <dZ>;+
Rj = +RRR; R+
<dZ> = <dZ> <dZ>+
<dz> = <dz> <dz>+

I <ts> = <ts> <ts>+

I
Table 2.3: UPSs for Italian

translated into a left transition (+a), a stationary portion (a) and a right transition
(a+). In Table 2.3 a complete UPS for the Italian phonetic system is reported. Notice
that unvoiced plosives are translated into silence (-) plus transition to the following sound
while voiced plosives start with a sonorant bar (b).

The UPS of a certain phoneme is unique: a single sequence of UPE describes the
phoneme. This decision leads to some considerations on the entire unit system. All the
variations at the UPS level will be included in the same acoustic model. This has the effect
of eventually increasing the ambiguity of the model, so degrading the performance of the
recognition system. Therefore, if the variations in the phonetic structure are reasonably
strong, it is better to defer to the higher level the specialization of the model, that is, to
consider the variation as a different unit. Moreover, if some variations strictly depend on
the context, it is easier to handle them at the higher level. The translation of a word from
its phonetic form to its description in terms of recognition units starts with the translation
of each phoneme into the correspondent string of UPE. According to Table 2.3, as an

www.manaraa.com

2.2 System Description 23

example, the italian word APPARTIENE, in its basic phonetic form /apjaRtj(ne/ can be
translated into:

+a a - p + +a a +R R R R+ - t+ +j j+ +((n +8 8

The second step consist of detecting where the transitions are, or better, of merging two
consecutive transitional UPEs into one single transition unit and deleting the remaining
transitional UPEs. So, following the previous example, we obtain:

+a a - p;a a +R R R R+ - tj j((n +8 8
a - p;a a R R - tj j((n 8

It should be noticed that defining the UPS of the generic phoneme /x/ as x = +x x+
produces the classical diphone definition.

At this point the description of the word can be handled by a set of rules to take into
account the possible effects of a particular phonetic context that cannot be caught by the
general UPS.

Contextual rules

Contextual rules can be expressed in the following general form:

UI U2 ••• Un = WI W2 ••• W m

where Ui and W; are generic recognition units: the sequence of units Ui , i = 1,2, ... , n
is translated into the sequence Wj j = 1,2, ... , n. In our system, rules are applied
sequentially in the given order to the whole word. Table 2.4 gives an example of a rule
set; the symbol # is a wildcard having the meaning of a generic phoneme. In that rule set
we want the phoneme /R/ to show a stationary portion only when it is not intervocalicj
the UPS of /R/ is made up of two consecutive stationary portions (+R R R R+), as in
Italian is impossible to utter an /R/ between two consonants and as according to the
rules each vowel cuts away an R we obtain the desired transcription. The rules dealing
with /v/ permits us to define only left transitions for the vowels and to have only right
transitions when the vowel is followed by /v/.

The rules 1-4 cause the two vowels 0 and) to be represented by the same symbol 0 as
well as the two vowels (and ej this is done because of the acoustic similarity of the sounds
and due to the fact that in Italian the use of the two o's and of the two e's depends on
speaker habits. Finally rule 17 transforms each geminate into the corresponding singleton
as we defer the distinction between them to higher levels of knowledge.

Extending the rules to the previous example it can be easily obtained that

a - p;a a R R
a-pa a aRR

- tj j((n 8

- tj je e n e

This formalism, developed in order to easily transcribe large lexicons into recognition units
given different unit definitions (including "phonemes" and "classical diphones"), was im­
plemented by a program (LDS Lexicon Development System) whose output is compatible
both with the HMM training procedure and with word recognition and hypothesization
programs. Such a program supports lexicon creation, automatic transcription from or­
thographic to basic phonetic forms (including main variants), unit rules compilation,
transcription of words into the defi.ned units system and relative statistics.

www.manaraa.com

24 2 The Recognition Algorithms

1 #) = #0 12 oR = 0 oR
2)# = 0# 13 i R = i iR
3 #(= #e 14 uR=uuR
4 (# = e# 15 RRj=Rj
5 RRa=Ra 16 R Rw = Rw
6 RRe=Re 17 #i=#
7 RRi=Ri 18 a v = a av v
8 RRo=Ro 19 ev=eevv
9 R Ru = Ru 20 i v = i iv v

10 aR=aaR 21 u v = u uv v
11 e R = e eR 22 ov=oovv

Table 2.4: Contextual Rules

2.3 Lexicon Structure

Knowledge representation is a central issue in the design of a large-vocabulary word rec­
ognizer. Several representations of words have been devised and experimented with that
rely on different models and codes for accessing the lexicon. All models, however, describe
words through a level of representation corresponding to phonemes. This assumption is
also implicit in models like LAFS [28], where words are described as sequences of diphone
spectral templates, and an acoustic code is the basis of the lexical access. According to
most of these models, words are recognized by means of a single-step matching strategy
that use all available acoustic-phonetic information. Several experiments [36, 22, 52, 32],
however, pointed out that the structure of words, even partially specified, is a powerful
source of constraints that is able to substantially reduce the lexicon search space. The re­
duction is obtained by grouping words sharing the same phonetic features into equivalence
classes. According to this approach, words are described by means of a limited number of
phonetic classes rather than by means of phonemes. Then, a detailed pattern matching
process is performed only against the subset of candidates obtained through a less ex­
pensive selection that rules out unlikely words. A preliminary experiment, not reported
here, was performed taking as its test bed a large vocabulary of Italian words [20], to
evaluate the relative focusing capability of different representation schemes, with the aim
of selecting a representation of words suitable to an effective lexical access. Several dif­
ferent classes of phonetic descriptions were considered (ranging from a very rough one to
others quite close to the phonemic form), to clarify the relationship between the accuracy
of the phonetic description and its selective capability. Obviously, detailed classifications
result in higher selective capabilities, but a capability must be related to the complexity
of achieving a detailed classification. A tradeoff consists in selecting phonetic features
simple enough to be reliable and robust, but carrying sufficient information to reduce the
words candidates to a reasonable size. This tradeoff must be found by taking also into
account the possibility of misclassifications of a feasible acoustic-phonetic front-end.

The most important conclusions emerging from the results of that experiment are
summarized in the following:

www.manaraa.com

2.3 Lexicon Structure 25

• Even a very rough description of words, as given in terms of three classes only (Sono­
rant, Nonsonorant and Vowel) presents a powerful discriminating ability, confirming
the importance of the phonotactic shape of words.

• A detailed bottom-up classification of the Italian vowels is far less important for
word discrimination than a representation that allows the separation among Front,
Central and Back vowels.

• As far as consonants are concerned, the distinction between liquids and nasals is not
as relevant as the distinction between fricatives and plosives.

• A good tradeoff between accuracy and selection ability is obtained by describing
words in terms of six phonetic classes corresponding to plosives, fricatives, liq­
uids/nasals, front vowels, central vowels, and back vowels.

It is worth noting that this description alphabet is very close to the classification
schemes proposed for lexical access of the Italian language [30] as well as of other lan­
guages [22,52,47] on the basis of different analyses. Similar categories, in particular, have
been proposed on a linguistic basis in the pioneering work of Shipman and Zue [49]. Even
more interesting, however, is the consideration that similar broad phonetic classes are
produced as a result of automatic clustering of phonemes using several different statisti­
cal methods. Consider, for example, the results of Poritz's experiment on a 5-state HMM
cited in [33], and classes obtained through different optimization criteria such as the the
maximization of the mutual information or transinformation [47]. Moreover, phonemes
can be clustered into classes on the basis of the distance between phoneme HMMs [51],
between cepstral parameters [40], or between more complex feature vectors [16, 39], con­
firming that th.e above mentioned classes can be reliably discriminated.

Lexical access is performed, therefore, through the code obtained by segmenting and
classifying an utterance in terms of six broad phonetic classes.

2.3.1 Phonetic Segmentation

Phonetic segmentation is performed by two modules that work in sequence: a frame-by­
frame phonetic classifier and a phonetic segmenter.

Phonetic classification

The frame-by-frame labeler estimates, by means of a hierarchical cubic polynomial clas­
sifier [1], the likelihood that a cepstral vector belongs to the phonetic classes described
by the following symbols:

kl = pl : silence or plosive consonant
k2 = IT : fricative consonant
k3 = In : liquid or nasal consonant
k4 = Iv : front vowel
ks = cv : central vowel
ks = bv : back vowel

This set of labels will be referred to in the following as "classification alphabet". It
has been chosen as a result of a preliminary study o,n the discrimination of words in a

www.manaraa.com

26 2 The Recognition Algorithms

large Italian lexicon by partial descriptions [30, 2]. A phonetic tree for the Italian and
German language is represented in Figure 2.lla, in Figure 2.llb the similarity among
phonemes is represented by a dendogram, and the separability into different classes by
using cepstral features is illustrated in Figure 2.12.

These phonetic features are simple enough to be extracted reliably, but, at the same
time, they carry sufficient information to reduce the set of words that are described by
the same sequence of symbols to a reasonable size. For each 10 msec speech frame, 18 Mel
based cepstral parameters (co, Cl, ... ,C17) are computed. The components of the primary
pattern vector x used for classification are only the coefficients Cl to Cg and the total
energy of the frame. The ideal classification of a given frame can be described by a target
vector:

where

Zi = 1

Zj = °
if the frame belongs to the i-th class
if j f:. i

The classifier gives an estimation d of target vector z

by using a cubic function of vector x :

d = K(x)

The estimation is optimized for minimum mean-squared error 5, defined as:

S = E [(z - df(z - d)]

(2.3)

(2.4)

(2.5)

(2.6)

where T is the transpose operator, and E [.] is the expected value. Let y be the secondary
pattern vector obtained by appending to the vector x the quadratic and cubic combi­
nations of the parameters. The relation (2.5) can be expressed by the following linear
matrix equation:

d =ATy (2.7)

and the minimization of (2.6) leads to the equation [19] :

(2.8)

The training procedure for the classifier estimates matrices E [yyT] and E [yzT] by using

a data base of labeled speech, then it computes matrix A from equation (2.8) by means of
a recursive procedure described in [53] and [25]. The main characteristic of this procedure
is that the components of vector yare ordered on the basis of their significance with
respect to the discrimination of the classes. The number of components of y used for the
estimation is increased by one at each iteration which, therefore, produces a temporary
result that takes into account the most important components only. The most correlated
components, that are redundant for discrimination, are eliminated. On the average, a

www.manaraa.com

2.3 Lexicon Structure

~ __ --___ ::/ONEHES ____

./ VOWELS - SONORANTS NONSONORANTS
,1"'---. / \. ___ I

FRONT CENTRAL BACK LIQUIOS NASALS PLOSIVES FRICATIVES AFFRICATIVES

~~~I~{~!~~I/\ / \ ~ L:J ~ In VOICED UNVOICED 
vf vm vb 

VOICED UNVOICED d~ ts tJ 

0.50 

0.40 

0.30 

0.20 

0.10 

o 

(b) 

d L 

b 9 

I I I I I I 

pI I b d 9 P t k 

f 5 J 
(a) 

N f z dz t& 9 m v 0 

nets d2 & 5 R M a u 

ITALIAN SPEECH MATERIAL 
(4 SPEAKERS, 723 WORDS, 26 PHONETIC LABELS) 

Figure 2.11: Phonetic tree and dendogram 

fr 

27 



www.manaraa.com

28 2 The Recognition Algorithms 

8 . . .. . -
3.60 

N 
tJ 

u.. 1.20 u.. 
w 
0 
tJ 

..J 
« 

-1.20 0:: 
I-
en 
Q. 
w 
u 

-3.60 

-8 
-15 -9 -3 3 9 15 

CEPSTRAL COEFF. C1 

6 

3.60 

N 
U 

u.. 1.20 
u.. 
w 
0 
U 

..J 
« -1.20 0:: 
I-
en 
Q. 
w 
u 

-3.60 

-6 
-15 -9 -3 3 9 15 

CEPSTRAL COEFF. C, 

Figure 2.12: Scatter plot of C1 VS C2 for vowels (top) and fricatives (bottom) 



www.manaraa.com

2.3 Lexicon Structure 29 

test n. offrames pI fr In fv cv bv rejection error rate 
pI 173853 86.5 4.7 3.8 1.6 1.7 1.7 0.0 13.5 
fr 72875 3.2 84.3 8.1 2.6 0.4 1.4 0.0 15.7 
In 88473 1.2 1.9 83.4 7.6 2.9 3.0 0.1 16.6 
fv 140065 0.6 2.0 6.4 89.9 0.8 0.2 0.1 10.1 
cv 94987 0.8 1.0 3.3 1.7 91.1 2.1 0.0 8.9 
bv 121844 2.1 4.4 10.2 0.4 1.7 81.1 0.1 18.9 

Table 2.5: Class-to-class confusion matrix, best first decision 

test n. of frames pI fr In fv cv bv rejection error rate 
pI 173853 94.9 1.4 1.7 0.8 0.7 0.4 0.1 5.1 
fr 72875 1.3 90.2 5.5 1.5 0.2 1.3 0.0 9.8 
In 88473 0.5 0.9 93.4 2.8 1.3 1.1 0.0 6.6 
fv 140065 0.4 1.0 1.7 96.5 0.3 0.1 0.0 3.5 
cv 94987 0.4 0.5 1.6 0.8 95.7 0.9 0.1 4.3 
bv 121844 1.0 2.5 5.6 0.3 0·5 90.0 0.1 10.0 

Table 2.6: Class-to-class confusion matrix, first two best decisions 

reduction of the number of components, from 285 (10 linear, 55 quadratic, and 220 cubic) 
to 90, is observed for the secondary pattern vector. 

The classifier assigns to each input frame the class h; corresponding to the highest 
value component d; of the estimation vector d. Uncertainty and reject regions are also 
considered in the d space. If the estimated vector d falls in the neighborhoods of the 
nearest target vector, a single label is assigned to the analyzed frame, if its distance 
from two target vectors is within a given threshold, two labels are assigned, otherwise no 
decision is drawn. 

A set of 1105 isolated Italian words (TRA dictionary) pronounced by 5 male and 
2 female speakers was collected for training the frame-by-frame classifier. These 7735 
utterances were automatically labeled in terms of phonetic units as will be described in 
Sect. 2.5, where training of HMMs is illustrated, and used for estimating the parameters 
of 7 speaker-dependent classifiers. 
Another set of 1011 words, belonging to the dictionary of the geographic data base_ query 
application (GEO), was recorded by the same speakers and all the tests were performed 
on this set of 7077 utterances. The classifier performance, averaged among the speakers, 
given in terms of percentage of frames assigned to the six phonetic classes, is summarized 
in the class-to-class confusion matrix of Table 2.5 and 2.6. Table 2.5 shows the results 
considering the best first decision only, while Table 2.6 considers also the possible alter­
native decision. In 63% of the cases a single label is assigned to a frame. 



www.manaraa.com

30 2 The Recognition Algorithms 

Phonetic segmentation 

The phonetic segmenter module has as input the sequence of frame-by-frame classification 
labels and the related component of the estimated target vector, thus for each frame n: 

(2.9) 

where k; is one out of the six coarse phonetic labels and d; is the i-th component of the 
estimation vector d. For those frame where only one label is generated, In and I n are 
equal. The output of the phonetic segmenter is the so-called micro-segmentation, namely 
a structure constituted by a sequence of elements (the micro-segments) defined as: 

t = 1, ... ,T (2.10) 

where bt and et are the beginning and ending frames of the micro-segment, si and s~ are 
its first and second phonetic labels, ai and a~ are its classification reliabilities and l is a 
number related to the minimum segment energy. Of course, s~ and a~ are equal whenever 
a single hypothesis is produced. 

In the following the function of the different modules constituting the phonetic seg­
menter will be detailed. 

• PLOSIVE module 
This module give the label plosive to all frames that have 1 (silence) as energy 
quantization symbol. Additionally, it forces unconditionally to plosive the first and 
the last 3 frames of the utterance that could be inaccurate. 

• REJECT module 
Since the frame-by-frame classifier can reject the classification of one or more frames, 
this module links unlabeled frames to labeled ones. Its rule is to give the same label 
as on the first left-hand frame to the left half of the unlabeled segment and the same 
label as on the first right-hand frame to the right half. 

• MAJORITY VOTING FILTERS module 
The majority voting module processes the sequences of phonetic labels 

n= 1, ... N (2.11) 

assigned to each frame n as the first and second decision respectively, and obtains a 
smoothed representation 

n= 1, ... N (2.12) 

A preliminary spot-like smoothing is performed by applying the following filters: 

aba ===? aaa 

aaabaaa ===? aaaaaaa 

(2.13) 

(2.14) 

(2.15) 



www.manaraa.com

2.3 Lexicon Structure 

tv 
In ., 

co) pi 

II) 

~~------------~--cv 

tv 
In ., 

.) pi 

31 

Figure 2.13: a) Frame-by-frame classification before MAJORITY VOTING FILTERS, b) 
energy, c) Micro-segments after MICROSEGMENTATION for the Italian word /fiume/ 

where a and b are specific frame-by-frame labels, * is a generic label and the two 
rows in the formula refer to the first and second decisions respectively. Then a ma­
jority voting filter (MVF) is applied to each one of the symbol strings separately. 
The MVF substitutes to the central symbol of the moving window the most frequent 
symbol within the window. Window length is an important parameter that affects 
the performance of the lexical access module. As will be shown in Sect. 2.4.2, a 
5-frame window length gives the minimum number of word candidates as well as the 
minimum computational complexity . 

• MICROSEGMENTATION module 
This module defines the micro-segments as those portions of the utterance in which 
both the first and the second label remain unchanged. Figure 2.13 shows an example 
of frame-by-frame classification before the application of the majority voting filters 
and micro-segmentation after the application of module MICROSEGMENTATION 
for the Italian word fiume (/fjume/). The black segments represent first decision 
symbols, while gray ones represent alternative decision symbol frames; the phonetic 
class symbol corresponding to a segment can be read on the left hand side of the 
figure . 

• ENDPOINT module 
This module detects the longest path in the micro-segmentation, from the beginning 
of the utterance, crossing only plosive segments. The same operation is done back-



www.manaraa.com

32 2 The Recognition Algorithms 

A • 

c 

bv 

ov 

tv 

In 

fr' ~~~~~~ ________ _ 

pi 

Figure 2.14: Example of how the STEP module operates 

ward starting from the end of the utterance. The segments corresponding to the two 
paths are forced to plosive segments. This operation eliminates most of the errors 
due to the noise that sometimes is present at the beginning/ending of an utterance. 

• ELIM module 
This module deletes from the micro-segmentation all one-frame segments. 

• STEP module 
This modules eliminates the micro-segments deriving from the partial overlap of 
two adjacent hypotheses like the example reported in Figure 2.14. In that example 
the micro-segment between lines A and B is due to misalignment between the best 
labels and the second-best ones. There is practically no change of information in 
eliminating the micro-segment putting a boundary C between A and B. 

• RELIABILITY module 
This module computes the reliabilities a~ and a; for each micro-segment M(t) ac­
cording to the following formula: 

where 

e' 
a~ = l:>i(sj) 

i='" 

dI ; if kI ; = s~ 
dJ; if kJ; = s~ 
o otherwise. 

(2.16) 

(2.17) 



www.manaraa.com

2.4 Word Representation 33 

2.4 Word Representation 

Each word of the lexicon can be automatically translated, by means of a set of context­
sensitive rules, from its orthographic form into a number of possible phonemic transcrip­
tions taking into account the main speaker variations. From the phonemic forms, a set of 
phonetic representations of the words with different degrees of detail can be derived. The 
choice of a representation alphabet depends on a tradeoff between the speed-up of the 
lexical search due to the introduction of equivalent phonetic classes and the confusability 
given by a less detailed phonetic knowledge. For example, phonemes /s/ and /v / are both 
fricatives, but strong fricatives like /s/ are very likely to be correctly classified as fricative 
consonants, while weak fricatives like /v/ are quite often classified as liquid/nasals. It is 
possible to better account for these classification errors by representing words in terms of 
more detailed classes, but this advantage must be traded with an increase of the lexical 
search space. A compromise has been established by evaluating the results of a set of 
experiments, described in Sect. 2.4.2, using three representation alphabets: 

• AI, described by the following phonetic classes: 

hI = Spl plosive consonant 
h2 = Lpl silence or geminate plosive consonant 
h3 = Wfr weak fricative consonant 
h4 = Sfr strong fricative consonant 
hs = WIn weak liquid or nasal consonant 
hs = SIn strong liquid or nasal consonant 
hr = I unstressed front vowel 
hs = II stressed front vowel 
h9 = A unstressed central vowel 
hIO = AA stressed central vowel 
hll = U unstressed back vowel 
h12 = UU stressed back vowel 

where each symbol of the classification alphabet splits into two different representa­
tion labels accounting for the difference between stressed and unstressed vowels and 
between strong and weak consonants, 

• A2 , where the distinction between stressed and unstressed vowels has been elimi­
nated. 

• A3 , the same alphabet used for classification. 

As an example, the Italian word FlUME (river), whose standard phonemic transcription is 
/fjume/, is represented by the following strings of symbols, depending on the description 
alphabet: 

Wfr I 
Wfr I 

UU WIn I 
U WIn I 

fr fv bv In fv 

The representation of a word, in terms of the symbols of a description alphabet, will be 
referred to as: 

(2.18) 



www.manaraa.com

34 

INS 
(Wfr,kj) 

DEL 
(Wfr) 

DEL 
(I) 

INS 
(I,kj) 

DEL 
(UU) 

INS 
(UU,kj) 

DEL 
(W1n) 

2 The Recognition Algorithms 

INS 
(W1n,kj) 

DEL 
(I) 

Figure 2.15: Error model of the word jfjume/ 

where M is the length of the representation. 

2.4.1 Three-Dimensional DP Matching 

A word representation which takes into account misclassifications can be modeled by a 
graph such as the one shown in Figure 2.15 where the symbols of alphabet Al are used and 
each link is associated with a cost C( op( hi, k j )) corresponding to the alignment operations 
op( hi, kj ) below: 

sub(hi, k j ) : substitution of test symbol k j for reference symbol hi 

ins( hi, k j ) : insertion of test symbol k j after reference symbol hi 

del(hi ) : deletion of reference symbol hi 
The problem of finding the best matching of a reference word model against a test 

micro-segmentation can be stated as follows: 

• Select one path in word description and one in micro-segmentation; each path corre­
sponds to a string of symbols belonging to the representation and to the classification 
alphabet respectively. 

• Compute -the best alignment cost between these strings by using the costs defined in 
Sect. 2.4.1. 

• Repeat this procedure for all path pairs. 

• Select the minimum cost path pair. 

Two optimizations must be performed: the innermost computes the best alignment cost 
between two strings, the outermost finds out the minimum cost path pair. These opti­
mizations are carried out in a single pass by a Dynamic Programming procedure (three­
dimensional DP or 3DP) that develops warping paths in the three-dimensional space 
illustrated in Figure 2.16. The three dimensions represent the nodes of the reference word 
model (dimension R), the sequence of the test micro-segments (dimension T), and the 
levels of the micro-segmentation lattice (dimension L). A local cost function G(r, t, I) is 
defined in the RTL space, where r is a node of the word model associated with a symbol 
of the representation alphabet, t is the index of a micro-segment and 1, the lattice level, 
assumes the values 1 or 2 referring to the best and to the second-best segmentation labels 
respectively. The cost function G(r, t, 1) can be computed, for every r, t, and I, by the 



www.manaraa.com

2.4 Word Representation 

L T 

I 

Figure 2.16: Three dimensional space 

DP equations: 

G(r - 1, t - 1, k) + C(sub(w", sm 
G(r,t,l) = min G(r,t -1,k) + IC(w",sD 

10=1,2 

G(r - 1, t, k) + C(del(w")) 

where: 

C( ins( w", sm 

IC(w",sD = 
C C (sub( w", sm otherwise 

R 

35 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

where land j assume the value 2 only if the t-th micro-segment has two classification 
symbols. Equations (2.19), (2.20), (2.21) account for symbol substitution, insertion, and 
deletion respectively. It is worth noting that this structure can lead to "false insertion" 
events whenever adjacent micro-segments have the same phonetic symbol. Equation 2.22 
solves this case by considering a micro-segment as the continuation of the preceding one 
if they have the same label, CC being the "continuation cost". 

For each value of r and t, 10 equations must be evaluated in the above formulation, 
(equation (2.21) does not depend on l). A suboptimal solution, reducing the number of 
equations to 4 is used instead, that, given the statistical characteristics of the segmentation 
process, does not substantially affect the performance of the system. In fact, the system 
of equations (2.19), (2.20), (2.21) carries on all locally optimal warping paths. For any 
given t, two optimal alignment paths exist because both the first and the alternative 
phonetic label of the t-th micro-segment are considered. It must be noticed, however, 



www.manaraa.com

36 2 The Recognition Algorithms 

that if the t-th micro-segment has one label only, optimal partial paths associated with 
point (r, t - 1,1) and with point (r, t - 1,2) in the RTL space are forced to converge, in 
the next step of DP, to the same point (r, t, 1) and the DP algorithm keeps the best one 
only. As a single label is associated, on the average, with 65% of the micro-segments, even 
if the best path selection is made at each step t, the results of the matching procedure 
should not be appreciably affected. In addition, as far as insertion is concerned, only the 
first label of an inserted micro-segment can be considered, if statistics referring to the 
insertion costs have been obtained accordingly in the training phase. These hypotheses 
have been confirmed by the experimental results given in Sect. 2.4.2. The DP equations, 
thus, can be modified as follows: 

H(r -l,t -1) + C(sub(w",sD) 

H(r,t) = mm H(r,t -1) + IC(w",sD 
"'=1,2 

H(r -l,t) + C(del(w"» 

(2.23) 

(2.24) 

(2.25) 

As the decision about the lattice level is made at each step, the cost function H depends 
only on the variables rand t. 

Matching costs 

A simple function for the local matching cost is: 

hence: 

C1(sub(hi,ki» = -Log [Prob(substitution of ki for hi}] 

C1(ins(hi, ki» = -Log [Prob(insertion of kj after hi}] 

C1(del(hi» = -Log [Prob(deletion of hi}] 

(2.26) 

(2.27) 

These costs are estimated in the training phase by using the same phonetically bal­
anced vocabulary (TRA) used for training the phonetic classifier. Every uttered word is 
aligned to its phonetic description by means of the 3DP procedure. If a word has more 
than one phonetic description, the model attaining the minimum alignment cost is con­
sidered. A backtracking procedure collects, for each word, the number of substitutions, 
deletions, and insertions of phonetic symbols: 

N sub( hi, kj } N umber of substitutions of kj for hi 

Nins(hi, ki } = Number of insertions of ki after hi 

Ndel(hi ) Number of deletions of hi 

When all vocabulary has been processed, the alignment costs can be estimated as follows: 

Ntot(hi ) = L [N sub(hi, ki } + Nins(hi , kill + Ndel(hi }] (2.28) 
i 

C1 (sub( hi, ki }} = -Log(N sub(hi, kj}/Ntot(hi}} 

C1(ins(hi, ki» = -Log(Nins(hi, ki}/Ntot(hi » 

C1(del(hi)} = - Log(N del(hi}/ Ntot(hi}} 



www.manaraa.com

2.4 Word Representation 37 

)peaker !Sex DeletIons Incorrect !SubstItutIOns Insert}ons 
.JA 1 ~ 17ti :,mau 
~'R f 25 2: :1 
'D m l~ 2; S4 

1 m 18 2, la 
l M m l4 1 .6 
1i m 14 2. :U 
(.i p m l5 '4 2. It> 

Table 2.7: Number of segmentation errors 

These costs are re-estimated by iterating the training procedure until they do not change 
appreciably. Two or three iterations are generally sufficient for obtaining a stable solution. 
The "continuation cost" 00 is null using this metric. 
The initial costs are set as: 

=0 if hi belongs to class kj 

O} (sub( hi, kj )) 

=2 otherwise 

O}(ins(hi , kj )) =1 

O}(del(hi )) =1 

This initial setting corresponds to performing a 3DP matching using a modified Leven­
shtein distance. 
The error rates of the phonetic segmentation, computed during the estimation of the 
alignment costs, in terms of the number of deleted, substituted and inserted segments, 
are shown in Table 2.7 for 7 speakers. 

The transcription in terms of 6 phonetic classes of the 1105 words of the training dic­
tionary (TRA) generates a total of 7115 phonetic segments, i.e. 6.4 distinct phonetic 
segments per word, on the average. Segmentation produces, instead, 14.4 segments per 
word on the average. It is worth noting, however, that every segment in excess is not 
a spurious insertion since many of them are continuation segments as defined in equa­
tion (2.22) of Sect. 2.4.1. Table 2.7 shows that deletions and substitutions of segments are 
not very frequent, while more than 2 insertions per word can be expected. The highest 
contribution to the insertions is due to fricative and liquid/nasal consonants as shown in 
Table 2.8, where the percentage of substituted, deleted and inserted segments, averaged 
over all speakers, is detailed for each class. 

An example of the 3DP matching is offered in Figure 2.17 where the best alignment 
path is outlined. 

Duration of micro-segments 

Metric O}, defined in (2.26), does not take into account the micro-segmentation timing 
structure, a very important cue for word hypothesization. A straightforward way to 
include the duration of micro-segments in the matching cost is the following: 

(2.29) 



www.manaraa.com

38 2 The Recognition Algorithms 

Table 2.8: Percentage of deleted, substituted, and inserted segments for each phonetic 
class 

(REFERENCE) 

E M L I A- N E 

Lpl Win WIn II WIn Lpl 

d d d d d d d d d d d 

:'Pi:;: PL d d d d d d d I 

FY" FV I d • d d • d 

U4 LN • d d • d d 

• ft\' flV • • d d • d 

FR (rf. • d • d d 

• -':' f!\' :,. FV • • d • d 

C\I CV d d 

f'/ fill d 

LN PL • • • 
FV t.H d 

LN FY 

PL PL 

S: SUBSTITUTION D: DELETION I: INSERTION (THE BEST PATH IS 

MARKED BY CAPITAL LETTERS) 

Figure 2.17: 3DP matching: best alignment path 



www.manaraa.com

2.4 Word Representation 39 

where op1(hi' kj ) is the basic alignment operation of one test frame, labeled kj, against the 
reference symbol hi, and len(Mj) is either the duration of micro-segment Mj, if op1(hi' kj ) 
is a substitution or an insertion operation, or it is the average duration of the hi phonetic 
class corresponding to a deletion operation. 

Reliability of micro-segments 

Let the reliability rel(kj, M j ) of the kj label of micro-segment Mj lie in the interval 
[xl, :v2ji a local alignment cost can be defined in term of the conditional probability of 
the segment: 

CR(op(hi,kj),rel(kj,Mj),xl,:v2) = -Log(Prob(op(hi ,kj )I:V1 < rel(kj,Mj ) S :v2)) 
(2.30) 

By applying the Bayes relation, equation (2.30) can be rewritten as: 

C R( op( hi, kj ), rel( kj, M j ), :vI, :v2) = 

-Log [prob( op( hi, kj )) * Prob(:v1 < rel( kj, Mj ) S :v2Iop( hi, kj ) )] 
Prob(:v1 < rel(kj, Mj ) S :v2) 

(2.31) 

Factor Prob(:v1 < rel(kj, Mj ) S :v2) can be neglected because it neither depends on the 
reference symbol hi nor on the op(hi' kj). Hence, assuming the statistical independence of 
the alignment operations and of the micro-segment reliability, a matching cost function 
can be defined as the sum of two contributions, an alignment cost A and a reliability cost 
R as follows: 

where 

and 

C R'( op(hi' kj ), rel(kj, Mj ), :vI, :v2) = 

A( OP(hi' kj )) + 
R(xl < rel(kj, Mj ) S :v2Iop(hi' kj )) 

A( op( hi, kj )) = - Log( Prob( op( hi, kj )) 

(2.32) 

(2.33) 

R(op(hi' kj),rel(kj, Mj ),:v1,:v2) = -Log(Prob(:v1 < rel(kj,Mj ) S :v2Iop(hi,kj)) (2.34) 

thus, by taking into account the duration of micro-segments: 

C R"( op(hi' kj), rel(kj, Mj ), :vI, :v2) = 

C2(hi, kj, Op(hi' kj )) + 
R(:v1 < rel(kj, Mj) S :v2Iop(hi' kj)) 

(2.35) 

The reliability cost R can be estimated in the training phase by collecting statistics 
for each operation op( hi, kj ) into an histogram. The estimation can be simplified by 
considering that a micro-segment has associated with it one or two phonetic labels (Sl 
and S2) ordered according to their reliability. The histogram, thus, can be reduced to 
only three cells accounting for the following events: 



www.manaraa.com

40 2 The Recognition Algorithms 

• r1 : the drawn symbol kj is 81 and 82 = nil 

• r2 : the drawn symbol kj is 81 and 82 -:/: nil 

• r3 : the drawn symbol kj is 82 

As a second simplification, the following classes of events are clustered: 

• e1(kj ) : op(hi, kj ) == 8ub(hi, kj ) V hi E kj (correct matching) 

• e2(kj ) : op(hi,j) == 8ub(hi , kj ) V hi 3 kj (incorrect substitution) 

• e3(kj) : op(hi,kj ) == in8(hi,kj ) V hi (insertion) 

• e4(kj ) : op(hi , k j ) == del(hi ) V hi (deletion) 

Hence, given p and q, the reliability cost can be computed as: 

R(rp, eq(kj )) = -Log(Prob(rp I eq(kj )) ; p = 1, ... ,3 ; q = 1, ... ,4 (2.36) 

and the local cost as: 

(2.37) 

2.4.2 Lexical Access 

Even if the number of phonetic micro-segments in a word is, on the average, less than 
the number of centisecond frames by about an order of magnitude, the complexity of 
matching a micro-segmentation against every vocabulary word is impractical when the 
lexicon size is of the order of thousands. A representation that reduces storage costs and 
leads to an efficient lexical access is obtained by merging the sequences of phonetic classes 
that describe the words in a tree in which the initial common subsequences are shared 
[50, 14, 30, 47]. If the nodes of the lexical tree represent phonetic classes, all words which 
share the same coarse phonetic description can be associated with the same node (the 
node representing the last phoneme) as they become a set of phonetically indistinguishable 
lexical items. An example of a simple 12-word lexical tree is shown in Figure 2.18, where 
all leaves and some (terminal) nodes are associated with the set of lexical items having 
the same phonetic structure. A tree is best suited to the lexical access task, rather than 
a more compact graph structure, because the former allows the N best word candidates 
to be easily obtained. The 3DP algorithm, in fact, can evaluate the alignment costs of 
all vocabulary words in parallel. This operation would be more complex and expensive if 
performed on a graph. 

Given the micro-segmentation of an uttered word belonging to a lexicon represented 
by a tree TN, lexical access is performed by detecting the- sequences of phonetic nodes 
TN(i), and hence the corresponding words, whose costs computed by means of the 3DP 
lie within a fixed range of the best one. 

Each node TN(i) of the lexical tree is characterized by the following (static) informa­
tion: 

PHON..ID 
FIRST_SON 
BROTHERS 
LEQW 

phonetic identifier 
pointer to its first son 
pointer to the list of its brothers 
list of phonetically equivalent words 



www.manaraa.com

2.4 Word Representation 41 

GEOGRAFICA 

FIORENTINA 

Figure 2.18: A lexical tree 

where the phonetic identifier PHON.lD is a symbol of the representation alphabet, the 
FIRST _SON pointer identifies the first son of node TN(i), while BROTHERS is the pointer 
to the list of the brothers of TN(i), i.e. the nodes sharing the same father, and LEQW is 
the (possible empty) list of words that share the same path from the root node TN(O) to 
TN(i). 

As lexical access is based on the expansion of the TN tree, a set of two-element arrays 
is added to the static information of the nodes in order to save the values needed for 
carrying on ·the 3DP procedure: 

COST 
DECS 
LINK 

optimal alignment cost array 
decision symbol array 
next active node pointer array 

For each t = 1, . . . , T, the COST array stores the cost values of the current best alignment 
paths ending in node TN(i) after micro-segments M(t) and M(t + 1) have been observed. 
The DECS array stores the labels of micro-segments M( t) and M( t + 1) that are drawn by 
the optimization process; this information is used for dealing with "false insertion" events. 
Links to nodes that must be expanded are held into the LINK array. The expansion of 
the TN tree is controlled by a beam search strategy, working on two lists of active nodes, 
according to the basic steps described in Pascal-like language in Table 2.9 . 

When the last micro-segment M(T) is observed, the active nodes in list L( current) are 
processed only for possible extension of the best paths through deletions. The set of 



www.manaraa.com

42 2 The Recognition Algorithms 

Initialize variables current and nezt (referring to the list of active nodes to be expanded 
in the current and next cycle of the search) to 0 and 1 respectivelYj 
Initialize t, and COST(O) of the root node TN(O) to OJ The COST elements of all other 
nodes are set to OOj 

Create empty lists L( current) and L( nezt), append TN(O) to L( current). 
repeat 

Reset list L( nezt)j 
repeat 

Examine TN(i), next node in L(current). 

If TN(i).COST(current) exceeds the cost of the optimal path up to the micro­
segment M(t-l) of a fixed threshold, then' 

the best path associated with node TN(i) is extended no further, according 
to the beam search strategy. 

Else 
If the insertion cost obtained by using equation (2.24) of the 3DP procedure 
is less then TN(i).COST( nezt), the cost of the current best path up to micro­
segment M(HI) and node TN(i), then 
Set TN(i).COST(nezt) to the new value and append node TN(i) to list 
L( nezt) using TN(i).LINK( nezt) unless it is already there. 
For every son TN(j) of TN(i) do 

If the deletion cost obtained by using equation (2.25) ofthe 3DP procedure 
is less then TN(j).COST( current), the cost of the current best path up to 
micro-segment M(t) and node TN(j), then 
Set TN(j).COST( current) to the new value and add node TN(j) just after 
node TN(i) into list L( current). 
If the substitution cost obtained by using equation (2.23) of the 3DP 
procedure is less then TN(j).COST( current), the cost of the current best 
path up to micro-segment M(t) and node TN(j), then 
Set TN(j).COST( current) to the new value and append node TN(j) to list 
L(nezt). 

Reset TN(i).COST(current) to 00 and TN(i).LINK(current) to nil. 

until every node in L( current) has been processedj 

swap(C,S)j 

Set t to HIj 
until micro-segment M(T-I) has been observed. 

Table 2.9: Lexical access algorithm 



www.manaraa.com

2.4 Word Representation 

10°C---------::::::~==::::::~l 

~ 95 
w .... « a: 

8 90 
UJ 
=> ...J 
U 

~ 85 
w 
(!) 
« a: 
w 
~ 80 

20 40 60 80 100 120 140 

AVERAGE NUMBER OF CANDIDATE WORDS 

iff 

w .... « a: 
z 
0 

iii 
=> ...J 
U z -w 
(!) 
« a: 
w 
> « 

43 

100 

95 

90 

85 

80 b) 

75~~~~~--~~~~~--~~...J 

o 10 20 30 40 50 60 

AVERAGE NUMBER OF DP OPERATIONS (xl000) 

Figure 2.19: DP matching procedure comparison: a) Average inclusion rate vs. aver­
age number of candidate words, b) Average inclusion rate vs. average number of DP 
operations 

candidate words can be, then, easily retrieved by means of the LEQW of nodes contained 
in the list L( current). The average dimension of this set is controlled by the value of the 
beam search threshold. 

Experimental results 

A first set of experiments was devoted to the assessment of the 3DP method. The complete 
set of 1011 words of the CEO vocabulary pronounced by a male speaker was used as test. 

Figure 2.19a shows the rate of inclusion of the correct word in the candidate list versus 
the average number of candidate words for three different matching procedures, namely 
optimal 3DP (curve A), sub-optimal 3DP (curve B), and DP matching of the best first 
segmentation hypotheses only (curve C). Word models were represented by means of the 
symbols of alphabet AI, and the CI metric was used for the evaluation of the costs. The 
curves were obtained as a function of the beam search threshold. 
The 3DP procedure performs considerably better than classical DP: fewer candidate words 
and higher inclusion rates are obtained. The optimal and the sub-optimal procedure give 
very close results but the complexity of the sub-optimal procedure is comparable with 
the complexity of the classical DP (see Figure 2.19b), in fact, for each reference noqe and 
for each micro-segment, four equations rather than three must be evaluated. Sub-optimal 
3DP has been, therefore, used in all remaining experiments. 

A second set of experiments was carried out for selecting the best representation 
alphabet. The same test was performed by representing the GEO vocabulary words 
through the symbols of the alphabets AI, A2 and A3 introduced in Sect. 2.3.1. Table 2.10 
shows the number of nodes (N), the number of leaves (L), the terminal nodes (T), and 
the average branching factor of the obtained lexical trees. 



www.manaraa.com

44 2 The Recognition Algorithms 

actor 

Table 2.10: Number of nodes, leaves, terminal nodes, and branching factor of the 1011 
word GEO lexical trees using three representation alphabets 

100 100 

98 98 
#If 

#If 

96 
w 

w .... 
96 .... "" "" a:: 

a:: z 
z 94 0 

94 0 ..... ..... III 
III => 
=> .... .... (.) 
(.) z 92 z ..... ..... 

w 
w c:> 
c:> 90 "" 90 "" a:: 
a:: w 
w > > "" "" 88 

86 86 
20 40 60 80 100 120 1000 2000 3000 4000 5000 6000 

AVERAGE NUMBER OF CANDIDATE WORDS AVERAGE NUMBER OF DYNAMIC NODES 

Figure 2.20: Representation alphabets comparison: a) Average inclusion rate vs. average 
number of candidate words, b) Average inclusion rate vs. average number of expanded 
nodes 

The curves of Figure 2.20a, that present the inclusion rate versus the average num­
ber of candidates . obtained by varying the beam search threshold, suggest that a more 
detailed specification of the lexical tree, such as that offered by alphabets Al and A2 , 

does not substantially reduce the candidate average size at inclusion rates greater than 
99%. Better performance of alphabets Al and A2 , with respect to alphabet Aa, for more 
constraining beam search thresholds, is not surprising because more information is con­
veyed by their alignment cost matrices. However, due to the scarce redundancy of the 
micro-segmentation code, large values of the beam search threshold must be used for ob­
taining acceptable high performance. Thus, coarseness of matching renders the accuracy 
of the model unhelpful. Furthermore, the computational load increases when more de­
tailed representation alphabets are used, as shown in Figure 2.20b, where the inclusion 
rate is plotted versus the average number of nodes expanded during the search. Aa has 
been, therefore, used as the representation alphabet in all successive experiments. 

The third experiment has been carried out to assess system- performance as a function 
of the above described metrics C1, C2 and Ca. Its results are summarized in Figure 2.21a 



www.manaraa.com

2.4 Word Representation 

.,. 
w 
~ « 
cr: 
z 
8 
<Jl 
:::> 
-" 
<.J 
;::; 
W 
C) 
« 
cr: 
w 
> « 

100 

99 

40 50 60 70 80 90 100 110 120 

AVERAGE NUMBER OF CANDIDATE WORDS 

.,. 
w 
~ « 
cr: 
z 
0 ... 
<Jl 
:::> 
-" 
(.J 

z ... 
w 
C) 
« 
cr: w 
> « 

45 

100 

99 

98 

97 

96 

95 
1000 2000 3000 4000 

AVERAGE NUMBER OF DYNAMIC NODES 

Figure 2.21: Comparison of different metrics: a) Average inclusion rate vs. average 
number of candidate words, b) Average inclusion rate vs. average number of expanded 
nodes 

and Figure 2.21b. 
Timing information (metric C2 ) gives substantial improvements, and further improve­

ments are obtained by using the reliability of the phonetic labels (metric C3 ). 

The next set of experiments was performed for seven speakers, in the best conditions 
suggested by the previous experiments: sub-optimal 3DP, A3 representation alphabet and 
C3 metric. Figure 2.22a shows, for various beam search thresholds, the inclusion rates 
and candidate list size for all speakers, while Figure 2.22b presents the averaged results. 
The difference of the average inclusion rate among speakers is within 1% for the same 
beam search threshold value. Larger values of the threshold do not affect appreciably 
the accuracy of the hypotheses, while they considerably increase the average number of 
candidate words, and the computational load. On the average, only about 10% of the 
items in the lexicon must be verified, and substantial improvement can be obtained by 
taking into account the heuristics introduced in Section 2.4.2. Figure 2.23 shows the 
average number of word candidates as a function of the number of syllables in a word; 
superimposed, as a bar graph, is the distribution of words in the GEO vocabulary as a 
function of their number of syllables. Short words generate a large number of candidates 
because the shorter the uttered word is, the easier it is to find, in a large vocabulary, 
similar or slightly different words in terms of a phonetic description into coarse ~lasses. 
Errors are uniformly distributed among words composed of 2, 3 and 4 syllables. No errors 
were observed for monosyllabic or very long words. Monosyllabic words are generally 
well segmented and classified, when pronounced in isolation, because they are pronounced 
slowly with respect to the syllables of polysyllabic words, as can be observed in Figure 2.24 
where the average syllable duration is shown as a function of the number of syllables in a 
word. 

Figure 2.25a shows the inclusion rate as a function of the position of the correct word 



www.manaraa.com

46 

~ 
w 
~ 
<I: a: 
Z 
0 .... 
In 
::> 
....I 
U 
Z .... 
w 
CI 
<I: a: 
w 
~ 

100 

98 

~ ~ ~ 100 lW 1~ 1~1~ ~ 

AVERAGE NUMBER OF CANDIDATE WORDS 

w 
~ « a: 
Z 

8 
In 
::> 
....I 
u 
Z .... 
W 
CI 
<I: 
a: w 
> « 

2 The Recognition Algorithms 

100 

99.S 

99 

98.S~~--~-J--~--L-~--~~L--J 

SO 60 70 80 90 100 110 120 130 140 

AVERAGE NUMBER OF CANDIDATE WORDS 

Figure 2.22: Results as a function of the beam search threshold: a) for 7 speakers (5 male, 
2 female), b) averaged results 

50 

w 40 
~ III « C c a: ... 
c i z 
<I: 30 11. U 0 ... w 0 CI 
a: <I: 

~ w 20 z aI 
::E: W 

U ::> a: z w 
w 6D 4-
CI 1D <I: 

40 a: 
w 
> 20 « 

0 
2 3 4 5 6 7 

NUMBER OF SYLLABLES 

Figure 2.23: Average number of hypothesized words and distribution of words in the GEO 
vocabulary vs. their number of syllables 



www.manaraa.com

2.4 Word Representation 47 

32 

() 
41 
III 
() 

W 
-J 
III 

"" -J 
-J 
>-
(/) 
...... z 
0 .... 
~ 22 "" a: 
::l 
Q 

W 20 
C!) 

"" a: 
18 w 

~ 
16 

0 2 3 4 5 6 7 

NUMBER OF SYLLABLES 

Figure 2.24: Syllable duration 

in the list, ordered by cost, of candidates generated by the lexical hypothesizer; in 62% of 
the cases the correct word is in the set of the best-scored phonetically equivalent words 
and only one word is hypothesized in 13% of the cases, as shown in Figure 2.26a where a 
histogram representing the distribution of the size of the candidate word list is reported. 

Use of heuristics 

Robust heuristics can be introduced in the lexical access procedure to reduce the average 
number of hypothesized words and to speed up computation. 

The first one (HI) smoothes out the strings of phonetic labels produced by the frame­
by-frame classifier through a majority voting filter. Two strings of symbols are considered: 
one corresponding to the best first classification and the other one corresponding to the 
sequence of alternative decision labels. The second decision symbol is set to the value 
of the best one whenever the classifier has taken a single decision. The majority voting 
filter, applied to a shifting window of N (odd) frames, associates to the central frame 
of the window the phonetic labels that most frequently appear as the best first and 
the alternative decision respectively. Fewer micro-segments are obtained because many 
spurious segments are eliminated. This reduction of the number of micro-segments reduces 
the number of operations needed for matching as well. Unfortunately, by increasing the 
window length, some correct segment disappears. Therefore, the number of spurious 
insertions decreases, but the number of deleted segments increases. The optimal window 
length depends on the speaking rate. Several experiments were performed for all 7 speakers 
varying the beam search threshold in order to achieve, for a given length of the majority 
voting filter window, an average inclusion rate of 99.7%, the same obtained excluding 
any filtering (window length equal to 1). The results are shown in Figure 2.27 where the 



www.manaraa.com

48 

Ott 

w 
to-
e( 
a: 
z 
0 ... 
<Il 
:::I 
-' 
(.) 
z ... 

100r------=~~~------------, 

90 

80 

70 

60 

50L--L--~-L--~~--'~~--' __ ~~ 
o 10 20 30 40 50 60 70 80 90 100 

BEST CANDIDATE POSITION 

(a) 1011 words 

Ott 

W 
to-
e( 
a: 
z 
8 
<Il 
:::I 
-' 
(.) 

:s 

2 The Recognition Algorithms 

100r--------=::::::::::::======~ 

70 

60 

50 

o m ~ ~ M l00lml~1~lM200 

BEST CANDIDATE POSITION 

(b) 18388 words 

Figure 2.25: Cumulative inclusion rate as a function of N-best candidate words 

(%)r-------------------------, 2.0r---------------------------~ 
14 (%) 

1.8 

12 

10 

B 

6 

0.6 
4 

0.4 
2 

0.2 

OL-__ ~ __ _L __ ~~~~~~ 

100 200 300 400 500 o 500 1000 1500 2000 2500 

NUMBER OF CANDIDATE WORDS NUMBER OF CANDIDATE WORDS 

(a) 1011 words (b) 18388 words 

Figure 2.26: Number of candidate words histogram 



www.manaraa.com

2.4 Word Representation 49 

190 9000 
Ul 

li! 180 Ul 
0 W 
3: 0 

0 
~ 170 z 

"' 
8000 Co) 

S 160 
... 
:E 

0 "' z z 
~ 150 ~ 
u.. / 

7000 
u.. 

0 / 0 
II:: 140 

/// 
II:: 

w W 
III III 
:E :E 
::I ;" ::I 
z Z 

w 6000 w 
c:l c:l 

"' "' II:: II:: 

~ 110 
w 
~ 

100 5000 
3 5 7 9 

WINDOW LENGTH 

Figure 2.27: Average number of candidate words (A) and average number of expanded 
nodes (B) per word vs. filter window size 

average number of candidate words (curve A), and the average number of nodes expanded 
per word (curve B) are plotted as a function of the filter window size. A window size 
value of 5 frames gives the minimum number of word candidates as well as the minimum 
computational complexity. A second heuristic (H2 ) refers to reliable segments. Let R (sD 
be a function that associates a number rt to the label s~ of a micro-segment M(t) and let 
R (sD be monotonically increasing with the probability that s~ is a correct classification 
of the micro-segment M(t). If such a function exists, and if it is continuous, a threshold 
Z and a value v can be found such that: 

r~ > Z ==> Prob [s~ is a correct classification I M(t)] > v (2.38) 

Thus, in principle, a threshold z can be chosen such that it is possible to detect segments 
whose probability of being misclassified is below a fixed value, or, in other words, segments 
that can be considered correctly classified with a given confidence value. The reliability 
measure associated with micro-segments can be chosen as function R according to the 
results shown in Figure 2.28, where an estimation of the probability that a micro-segment 
label is correct, given its reliability, is presented for each phonetic class. A value of the 
threshold Zm (shown by an arrow in the figures) was fixed for each class k,.,., so that all 
training set segments with reliability greater than Zm were correctly classified: 

(2.39) 

During lexical access, a segment satisfying the above mentioned conditions is considered 
correctly classified. Hence, it cannot be inserted or substituted for a reference symbol 
that does not belong to the same phonetic class. This further local path constraint in the 



www.manaraa.com

50 2 The Recognition Algorithms 

1.0 1.0 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 

1.0 1.0 

0.8 t 0.8 t 
0.6 0.6 

0.4 0.4 

0.2 LIQUID/NASAL 0.2 FRONT VOWEL 
0 0 

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 

1.0 1.0 

0.8 t 0.8 t 
0.6 0.6 

0.4 0.4 

0.2 CENTRAL VOWEL 0.2 BACK VOWEL 

0 0 
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 

Figure 2.28: Probability of correct classification of a micro-segment vs. its reliability 



www.manaraa.com

2.5 Verification Module 51 

3DP procedure has two beneficial eftects: an appreciable reduction of the computational 
load and of the average number of word candidates, for the same inclusion rate. As can 
be observed in Table 2.11, a small reduction of the inclusion rate is traded for a significant 
reduction of the average candidate word number and of the computational load expressed 
in terms of average number of expanded nodes. 

Similar considerations lead to a third heuristic (H3) that exploits robust cues for de­
ciding that a particular phonetic class cannot be hypothesized for a given segment. If 
phonetic class k.. cannot definitely be assigned to a micro-segment, it cannot be sub­
stituted in the 3DP matching for a symbol of the representation alphabet belonging to 
class kn . Frame energy, for example, has been used as a cue for deciding that a high 
energy micro-segment cannot be substituted for a plosive sound. Table 2.11 shows the 
performance obtained by using the H2 and H3 heuristics, and a 5-frame window majority 
voting filter (Ht). 

As mentioned in the preceding subsection, the largest set of word candidates is gen­
erated by short words which, however, are generally well segmented. Hence, it is likely 
that the correct word is in the first few positions in the candidate list. candidate word 
list, but the list is generally very short. The fourth heuristic (H4) introduces, therefore, a 
constraint on the maximum number of active nodes of the lexical tree that are considered 
for word retrieval at the end of the search: only the N best nodes are allowed to generate 
word hypotheses. This constraint is not used during the search because it would be too 
expensive to order the best partial paths according to their cost, rather than performing 
a simple beam search. 

Figure 2.25 shows that more than 99% of inclusion rate can be obtained keeping only 
the first 60 best candidate nodes. Recall that the number of candidate nodes is different 
from the number of candidate words, since more than one word can be associated with a 
candidate node. This result is also illustrated in Figure 2.29, that shows the inclusion rate 
and the average number of word candidates obtained by varying the value of the maximum 
number (j) of best candidate nodes (Mj, j = 40, ... ,(0) kept by the hypothesizer. 
The performance of the system using all these heuristics, constraining the maximum 
number of final active nodes to 140 is detailed in last column of Table 2.11 

In Figure 2.30a the average inclusion rate is shown as a function of the vocabulary size. 
Refer also to Figure 2.25b and Figure 2.26b for statistics about experiments made with the 
18388-word vocabulary. By increasing the vocabulary size from 1011 words to 18388, and 
using the same beam search threshold, a slight reduction (0.7%) of the average inclusion 
rate is observed. The increase of the average number of word candidates is presented in 
Figure 2.30b. It is worth noting that the percentage of the vocabulary words that must be 
verified decreases as vocabulary size increases: the bold right lines in the figure represents 
10% and 2% of the vocabulary size respectively. 

2.5 Verification Module 

This module applies a more detailed phonetic knowledge than the phonetic classification. 
A Word Translator generates, from the orthographic form of the words, one or more 

phonetic transcriptions through a set of rules. Multiple transcriptions are due, for exam­
ple, to the ambiguity introduced by affricates and by intervocalic /s/ that, in Italian, can 
be voiced or unvoiced depending on the speaker's regional attitude. Moreover, diphthongs 



www.manaraa.com

52 2 The Recognition Algorithms 

100.0 

99.9 

w 99.8 
l-
e:( 
II: 99.7 
z 
0 99.6 ... 
(/) -::;) 

-' 99.5 u z ... 
w 99.4 
0 
e:( 

99.3 II: w 
> 
e:( 

99.2 

99.1 

99.0 
30 40 50 60 70 80 

AVERAGE NUMBER OF CANDIDATE WORDS 

Figure 2.29: Average inclusion rate and average number of candidate words as a function 
of the number of final active nodes 

100 500 
If) 

99.8 a) c 
II: b) 0 

w :z 400 
I- W e:( 99.6 I-a: e:( 

z c ... 
0 0 ... 99.4 If) ~ 300 :;:, U ...J 
U LL.. z 99.2 0 ... 
w ffi 200 0 III e:( 99 :E a: 
w :;:, 

> z 
« w 

98.8 0 « a: 
w 
> 

98.6 « 
a 

a 2 4 6 8 10 12 14 16 18 20 a 2 4 6 8 10 12 14 16 18 20 

VOCABULARY SIZE (X 1 000) VOCABULARY SIZE (X 1000) 

Figure 2.30: a) Average inclusion rate and b) average number of candidate words as a 
function of the vocabulary size 



www.manaraa.com

2.5 Verification Module 53 

Table 2.11: Word hypothesization module performance 

s EN· A 

I I I I 

Figure 2.31: HMM of the word /SIENA/ 

and hiatuses are not discriminated by the Word Translator, which always includes both 
these forms in the translation. The current set of rules produces 1.44 transcriptions per 
word, on the average. Every word phonetic transcription is then represented by a se­
quence of phonetic units, taking into account coarticulation phenomena occurring in the 
transitions between different sounds. Phonetic units are modeled by left-to-right HMMs 
with different number of states [11, 42., 1]. An example of an HMM for the Italian word 
/SIENA/ is given in Figure 2.31. 

The verification module accepts as input the list of word candidates produced by 
the lexical access module. The HMMs sequences corresponding to this set of words are 
organized into a tree structure, where transcriptions with common initial parts share 
the same branches. Then, a beam search Viterbi procedure is performed on the tree to 
evaluate the most likely words. 



www.manaraa.com

54 2 The Recognition Algorithms 

2.5.1 The Recognition Units 

Sub-word recognition units offer several advantages over whole word models. If the vo­
cabulary of the system is very large or if the application needs frequent updates, a whole 
word approach is not appropriate because it requires new training sessions. Furthermore, 
a substantial saving in storage is obtained since the same unit appears in different words 
but its parameters are stored only once. Another advantage of sub-word units is that 
properly designed units can perform better than whole words models in discriminating 
words that include similar parts (e.g. minimal pairs) [45]. In fact, the difference often 
observed for the emission densities of the common part of two slightly different words is 
generally due to the limited size of the training set. The consequent difference in the par­
tiallikelihoods computed during recognition can exceed the differences in the phonetically 
different part. Since in the sub-word approach phonetic portions that are equal are rep­
resented by the same model, the differences in the discriminant parts are enhanced. This 
consideration suggests the representation of steady parts of the phonemes (whenever they 
can be defined) by the same model, and to account for transitions by means of additional 
models only if they carry significant discriminant information [11]. This definition of the 
sub-word units was first proposed for template-based systems [46], leading to satisfactory 
results both for Italian [9] and for English [44]. 

These recognition units can be considered as a tradeoff between diphones and phonemes. 

Diphones, defined as the speech portion between two consecutive phonemes, take coarticu­
lation effects into account since the transitional effects are included in the units. However, 
as in a language there is a large inventory of diphones, it is difficult to obtain good es­
timates of the parameters of their HMMs using a limited training set. Moreover, the 
model of the steady part of phonemes is included, with relevant differences, into a num­
ber of different models leading to poor estimation. Finally, the information included in 
the transition part of many diphones is not significant for the discrimination of adjacent 
phonemes. For instance, the transition between an unvoiced fricative and a vowel (like 
/fa/ in the Italian word /fare!) does not carry necessary information for the classification 
of the phonemes /f/ and /a/. 

On the other hand, the number of phonemes is very small, thus they are suitable for 
accurate statistical modeling [5] but their pedormance [11] is poor when the discriminating 
information among different sounds depends on the transition towards adjacent phonemes. 
For instance, unvoiced plosives, such as /k/, are acoustically realized by a short interval 
of silence followed by a burst. It is impossible to classify a plosive only by means of the 
burst since most of the discriminating information is in the transition. 

In order to define an appropriate set of recognition units, a special language and the 
corresponding compiler [12] was designed. It allows any set of recognition units to be 
easily defined and words to be automatically translated from their orthography directly 
into the sequence of defined units. 26 phonetic units were considered for the Italian lan­
guage. Of the 650 (26 * 25) possible transition units, 101 only were selected according to 
phonetic knowledge and observing the results of recognition experiments carried out with 
difficult vocabularies such as minimal word pairs [11]. These 101 transition units include 
all plosive/vowel, affricate/vowel and some sonorant/vowel transitions in addition to some 
consonant clusters. Transitions from vowel to sonorant are considered only for consonants 



www.manaraa.com

2.5 Verification Module 55 

trans atlOn mto 
units 

s e te e 
a - a ar r tt Ie e n e 
a av e er re e 
a av r re e e e 
a n a a ar re e 

Table 2.12: Some examples of word translation from orthographic form to phonetic form 
and to their corresponding sequence of recognition units. The recognition units '-' and 
'b' are the silence and the voicebar respectively 

Irl and Iv/. As duration is not modeled very well by Markov models [41], geminate con­
sonant are represented as singletons, so that words SETE (thirst) and SETTE (seven), for 
instance, are phonetically indistinguishable; their disambiguation can be deferred to the 
higher level linguistic processing. 22 steady units complete the unit inventory: 5 vowels, 6 
sonorants, 5 fricatives, 4 affricates, silence and voicebar. Some examples ofthe translation 
from the orthographic form to the phonetic one and finally to the corresponding sequence 
of units is given in Table 2.12. Details about the context-sensitive translation rules can 
be found in [12, 11]. Similar approaches have been proposed in the past: using left and 
right contextual phonemic units [48] obtained as a weighted estimation from context-free 
and context-dependent units, where the weights depend on the number of occurrences 
of each unit in the training set, or manually choosing which context could improve the 
recognition rate by means of an accurate error analysis [15]. 

2.5.2 Model Estimation 

Hidden Markov modeling of the sub-word units allows model training to be performed 
automatically performed. 

As it is impossible in most of the cases, and always impractical to pronounce an ISO­
lated sub-word unit (such as a phoneme or a diphone), the training procedure relies on 
the observation of larger events such as words or sentences. The required observation sub­
sequences could. be made available by hand segmentation and labeling of the utterances, 
a time-consuming and error-prone process. It is possible, on the contrary, to estimate 
the model parameters of a set of sub-word units, without human interaction. From the 
orthographic form of the training vocabulary words, different phonemic transcriptions are 
generated according to their possible pronunciations and taking care also of the ambiguity 
arising in the translation process. These alternatives are automatically converted into the 
unit sequence. This operation is performed for all training words. The training set is 
composed of one or more utterances of the training vocabulary represented as sequences 
of Vector Quantization codewords. For each utterance, a forward and a backward ma­
trix is computed bootstrapping the system from untrained HMMs (uniform transition 
and emission matrices). For every sub-word unit appearing in the training data base the 
transition and emission probabilities are estimated by using a generalization to multiple 
observations of the classical re-estimation formula [34, I]. This procedure is repeated 
until convergence is reached. An important problem arises when a state is assigned zero 



www.manaraa.com

56 2 The Recognition Algorithms 

IN HMM REPRESENTATIONS, THE PROBLEM OF UNOBSERVED SYMBOLS DUE TO THE FINITE 
SIZE OF THE TRAINING SET, IS APPROACHED BY MEANS OF A PARZEN ESTIMATOR 

APPROXIMATION OF A DENSITY FUNCTION BY THE SUM OF GAUSSIAN KERNELS 

Figure 2.32: Approximation of a density function by the sum of Gaussian kernels 

probability for a given symbol because it has never been observed in that state during the 
training session. This problem, generated by a poor estimation of probability densities, 
due to the limited number of training examples, is generally solved by interpolation [5] or 
by setting to a small constant value the probabilities that are null [34]. 

In our system, a Parzen estimator with normal kernel [19] (see Figure 2.32) smoothes 
the emission probability estimates b;( k) of codeword k being in state i after the Forward­
Backward iterations [10, 11J according to this formula: 

(2.40) 

where d( k, m) is the Euclidean distance between the k-th and the m-th vector quantizer 
codewords, nc is the number of codewords in the codebook, D is a fixed parameter (the 
Parzen radius) and Ci is a normalization factor such that 

nc 

L b;(k) = 1 (2.41 ) 
Ie=l 

2.5.3 Experimental Results 

Each speaker trained a set of 126 unit models by pronouncing once the words in the TRA 
dictionary. Each training set consists of about 20 minutes of speech. These utterances 
were then coded by means of a speaker-dependent 7-bit vector quantizer. Five iterations 
of the Forward-Backward algorithm were sufficient for obtaining stable estimates of the 
parameters of the models. 

The confusion matrix among phonemes (steady units) is shown in Figure 2.33. 
Curve B in Figure 2.34 shows the recognition rate, averaged over all speakers, as a 

function of the best candidate position for the two-pass approach (hypothesis generation 



www.manaraa.com

2.5 Verification Module 57 

b d g t k P f f v s z , rAm n 11 dz ts d 3 tj J W • • , 0 U 

b 

d 

g 

k 

P 

J 

v 

s 

z 

r 

A 

m 

n 

11 

dz 

ts 

W 

• 
• 
o 

U 

87 

19 

1 

3 

3 

77 111 

90 

70 111 

96 

3 

3 

3 

3 

3 II 

3 

II 

9 

3 

116 

96 3 

3 9 83 

41 22 3 9 

00 

113 8 

116 3 

3 3 1 3 77 3 3 

6 3 3 83 3 

9 II II 25 211 12 

3 II 67 12 

6 22 70 

3 116 

~oo 
48 3 41 6 

32 67 

36 63 

10Cl 

100 

113 8 

100 

110 II 

100 

Figure 2.33: Confusion matrix among phonemes 



www.manaraa.com

58 

100 

99 

~ 98 

z 
0 ... 
I- 97 ... 
z 
8 
(.J 
w a: 

2 The Recognition Algorithms 

B 

A 

2 3 4 5 6 7 8 9 10 CD 

BEST CANDIDATE POSITION 

Figure 2.34: Recognition rate vs. N-best word scores for the 1011 word vocabulary 

by partial phonetic description and successive detailed verification by stochastic decoding). 
Every word hypothesized by lexical access is represented by the set of its transcriptions 
into recognition units. All these representations are then compiled into a tree whose 
branches are the sequences of states of the HMM recognition units, and whose leaves 
identify words. A beam search Viterbi procedure operates on a tree to evaluate the best 
state sequences. The paths that are still active at the end of the search generate a set 
of word hypotheses ordered according to their likelihood. 95% of words attain the best 
first likelihood, while 99.3% of the uttered words are correctly included in the final set 
of hypotheses, whose average size is 4.4. Curve A in Figure 2.34 refers, instead, to the 
results obtained in the direct approach, excluding the lexical access module, hence by 
applying the same beam search Viterbi procedure to the tree representing all vocabulary 
words. Obviously, slightly worse results are obtained in the former approach because 
the lexical access module propagates its errors (correct words missing in the candidate 
list) to the verification module. It is worth noting, however, that there is no difference 
in the recognition rate for the best first hypothesis. This means that a missing word in 
the candidate list produced by lexical access is also missed as the best scored one by the 
direct approach. By increasing the rank of the accepted hypotheses, the difference between 
the two curves keeps constant and depends only on the error of lexical access (0.5%). In 
Table 2.13 a comparison of the performance of the two approaches can be found. As far as 
complexity is concerned, the phonetic segmentation and the generation of the hypothesis 
tree for verification are negligible in comparison to the matching. Matching requires a 
basic computation both for lexical access and for verification: the dynamic expansion 
of a trellis node. It consists in the evaluation of the cost of expanding a partial path 
from an origin node to a destination node, and in its comparison with the cost of the 
current best path reaching the destination node. As the complexity of cost computation 
is approximately equal for lexical access and for verification, a good approximation of the 



www.manaraa.com

2.5 Verification Module 59 

Direct approach '1 wo pass approach 
Best first recognition rate 95.0-'2'!l 94.9-'fg 

Inclusion rate 99.9 '10 99.3'10 
Number 01 hypotheses b.b 4.4 

Number of operation/word - 9342 
in lexical access 

Number of operation/word 99795 17200 
in the verification module 

Total number of 9!:1795 :l654:l 
operation/word 

Table 2.13: Comparison of the one and two pass lexical access strategies 

computational complexity of the two approaches can be given in terms of the average 
number of expansion operations. A complexity reduction of about 82% is achieved. 

Figure 2.35 shows the recognition rate as a function of the best candidate position for 
the two-pass approach for the 18388-word vocabulary. The best first recognition rate is 
84.7%. Relevant improvements, similar to those in Figure 2.34, can be observed for the 
best two candidates, reaching more than 91% of accuracy. About 99.2% of the words are 
included in the final set of hypotheses whose average size is 21.3. 

2.5.4 Conclusions 

The main suggestions deriving from the hypothesize and test approach can be summarized 
as follows: 

• It is very easy to reach about 90% of inclusion rate in the set of candidate words, 
but the real problem in large-vocabulary lexical access is to obtain almost 100% of 
inclusion rate and a reasonably small number of word candidates. 

• A coarse phonetic segmentation can be more accurate than a detailed one, but few 
misclassifications can dramatically reduce the performance of a lexical access due to 
the small redundancy of the code. 

• Robust phonetic segmentation can be achieved by generating, rather than a sequence 
of segments, a lattice of phonetic hypotheses to be matched against the vocabulary 
words which can be represented by a graph model including statistics about possible 
segmentation errors. 

• the lexicon can be effectively represented as a tree, of phonetic nodes in the hypoth­
esize step, and of HMM sub-word units in the verification step. 

• A three-dimensional DP matching algorithm has been introduced that performs bet­
ter than other conventional algorithms. 

• A suboptimal version of the matching procedure can be used without appreciable 
performance degradation. 

The experimental results show the capability of the statistical models and of the 
lexical constraints to cope with the errors of the segmentation module. The accuracy of 
the HMMs of the sub-word phonetic units in the verification phase has also been assessed. 



www.manaraa.com

60 

~ 
w 
I-
< a:: 
z 
g 
I-.... 
z 
C!) 
0 
u 
w 
a:: 

100 

98 

90 

88 

86 

84 

2 The Recognition Algorithms 

2 3 4 5 6 7 8 9 10 a> 

BEST CANDIDATE POSITION 

Figure 2.35: Recognition rate vs. N-best word scores for the l8388-word vocabulary 

Over 99% of the correct words are within the first 5 best candidates for a lOll-word 
vocabulary; this accuracy reduces to about 96% for a l8388-word vocabulary. 

2.6 Continuous Speech 

The hypothesize and test approach has also been applied to the continuous speech recog­
nition task (see Figure 2.36). It is mainly suggested by efficiency issues. A continuous 
speech hypothesizer for a large vocabulary requires that its task is constrained by lower 
and higher level knowledge. While higher level constraints generally increase accuracy, 
the same cannot be said for bottom-up constraints. As shown in Sect. 2.4.2, word prese­
lection reduces computational complexity at the expense of a small increase in error rate. 
The Hypothesize process (Hp) generates a lattice of word candidates spanning the whole 
sentence, and the Test process (Tp) verifies each hypothesized word by computing scores 
of acoustic matching (see Figure 2.37). Each hypothesis consists of word identifier, log­
likelihood or probabilistic score and time boundaries. This lattice is then passed to the 
linguistic module for syntactic/semantic parsing [17]. This straightforward strategy has 
a number of drawbacks. 

The first one is that quite often the boundaries of candidate. words detected by the 
hypothesization stage are incorrect. This inaccuracy has been observed to be the cause of 
very bad scores for the true hypotheses when the Tp is based on Hidden Markov Models. 
Hence the Tp should not rely on the boundaries of the word hypotheses, rather only on 
the region in which the word could be observed. 



www.manaraa.com

2.6 Continuous Speech 

r 
2 STEPS 

t"'t 

1 STEP 
:It 

, 

Figure 2.36: Block diagram of the continuous speech system 

H-PROCESS T-PROCESS 

COARSE VECTOR 
INPUT: PHONETIC QUANTIZATION 

LATIICE SYMBOLS 

TREE OF COARSE TREE OF HMM 

KNOWLEDGE: 
PHONETIC SUB-WORD 

WORD UNITS 

DESCRIPTIONS 

THREE VITERBI 

DIMENSIONAL DECODING 
ALGORITHM: DYNAMIC OR 

PROGRAMMING FORWARD DECODING 

(3DP) 

TIME UNIT 1 MICRO-SEGMENT ~ 80 ms 1 FRAME = 10 ms 

Figure 2.37: Processes involved in the two-step strategy 

61 



www.manaraa.com

62 2 The Recognition Algorithms 

Figure 2.38: Lexical tree for the hypothesisation level 

The second disadvantage is a lack of efficiency for the computationally expensive task 
Tp: it is not easy to organize the lattice into a structure like a tree or a graph, that would 
allow an effective search strategy to be implemented. 

Finally, the above described approach is strictly sequential: the verification process 
cannot begin before the ending of the hypothesization process. This is in contrast with 
a real-time implementation, hence a more tight interaction between the two modules is 
suggested. 

In the following, the extension to continuous speech of the basic modules implemented 
for isolated utterance recognition will be decribed, and two control strategies will be 
outlined for a continuous speech word hypothesizer. 

2.6.1 Control Strategies 

At the hypothesization level, word phonetic transcriptions are organized into a tree (Ht) 
whose nodes represent coarse classes (Figure 2.18); terminal nodes have a link to the set 
of words they represent. 

At the Test (verification) level, the whole lexicon is organized into a tree (Tt) whose 
nodes represent Hidden Markov Model states (HMMs) of sub-word units (Figure 2.38). 
Hp and Tp algorithms are similar except for the score computation and for the kind of 
transitions among the nodes of the trees. As syntactic constraints are not presently used 
at this level, a word can be followed by every word of the vocabulary. Hence, whenever 
a node in the Ht (as well as in the Tt) has to expand beyond a terminal node, a word 
is hypothesized and the root node is considered again as a possible expansion. Each 
active node must keep the information about the score and the time corresponding to the 



www.manaraa.com

2.6 Continuous Speech 63 

path expansion to the root node for generating the beginning and ending time of a word 
hypothesis along with its likelihood score. 
This algorithm is an extension of the syntax-driven recognition algorithm described in [10] 
where the syntax was described by a graph. While a graph allows only the best-matching 
model to be detected, a tree permits all matching paths to be kept. The number of paths 
can be limited at each step by the beam-search threshold. 

Unless other constraints are introduced, the extension of the Tp (as well as the Hp) 
to continuous speech produces, for each active terminal node, a complete word hypothesis 
at each input frame (or micro-segment). A terminal node is generally active in a large 
range of frames in the neighborhood of the correct word ending frame; all termjnal nodes 
would be always active unless beam search is used. Thus a decision process (Dp) keeps 
only the best scored among all the hypotheses concerning the same word and starting at 
the same frame. 

Cascade integration 

The first integration consists in the sequential application of Hp and Tp as depicted in 
Figure 2.39 

The Hp generates a coarse lattice of word hypotheses through the above described 
procedure. The basic information shared among the Hp and the Tp is a mapping between 
each vocabulary word and its corresponding nodes in the Tt. As the same word can 
be hypothesized more than once in a given region, a decision process (DH) selects as 
boundaries for a word candidate hypothesis the beginning and ending point of the largest 
segment over which it appears. Thus, when the whole sentence has been processed by 
the Hp, the information about the nodes of the Tt that could be active in each detected 
segment is sent to the Tp. Thus the Tp estimates word likelihoods on the Tt. A node 
of the Tt is expanded only towards the nodes that the Hp has marked as active at that 
particular time interval. The decision process (DT) finally finds, for each detected word, 
the best ending point. 

The cascade integration solves the problem of inaccuracy of time boundaries, since 
only regions in which word hypotheses can be found are given to the Tp, which uses this 
information only to reduce the number of nodes that it will expand at each frame. As the 
Tp cannot start before the Hp has processed the whole sentence, this kind of interaction 
is not particularly suited to a real-time implementation. This problem has been solved 
by devising a second scheme that exploits a tighter integration. 

Full integration 

In the full integration scheme of Figure 2.40 the Tp performs the main hypothesization 
activity whose task is dynamically constrained by the Hp. After a micro-segment has 
been processed by the Hp, the current Ht active nodes constrain the Tp node expansion. 
To that purpose a mapping between the Ht and the Tt has been established. The Tp 
expands a Tt node only if its corresponding node in the Ht is active at that particular 
time frame. 

For mapping the Tt on the Hp, each sub-word unit is associated to a string of coarse 
classes, for instance: Ital = (pI, cv), Itsl = (pI, fr). 
Then the Tt, representing the whole lexicon, is built. Each node represents the HMM of 



www.manaraa.com

64 2 The Recognition Algorithms 

~---------------------------, 

Hp 

'------,------

Tp 

~----­

SELECT MICRO 
SEGMENT I 

EXPAND ACTIVE 
H-NODES 

UPDATE UST OF 
ACTIVE H-NODES 

SELECT FRAME J 

EXPAND ACTIVE 
T- NODES 

UPDATE LIST OF 
ACTIVE T - NODES 

r------- ---------- ---------, 
I I 

I 
I 

I DT I----i-' _-, 
I 
L __ ,-__ ~ ____ ~~~~~~::~~ 

1= 1 

WORD LATTICE 

L..-.--STOP 



www.manaraa.com

2.6 Continuous Speech 

r---------------------------------
Hp SELECT MICRO 

SEGMENT I 

EXPAND ACTIVE 
H-NODES 

UPDATE UST OF 
ACTIVE H- NODES I L. __________________________________ ..J 

r------- ------------ -------------, 
Tp 

SELECT FRAME J , 
INSIDE MICRO- : 

SEGMENT I , 

EXPAND ACTIVE 
T-NODES 

UPDATE USTOF 
ACTIVE T - NODES 

I 
I 

I 
I , 
I 
I 

I 1. ____________________________________ J 

r-------- -- ----------- ------------, 
, SELECTION OF ' 
I Dp BEST TERMINALS 

I 
I 

, , 
'--------

___________ ..J 

J= J+ 1 

1= 1+ 1 

1= 1 

NTOT 
MAPPING 

WORD LATTICE 

Figure 2.40: Full integration 

65 



www.manaraa.com

66 2 The Recognition Algorithms 

a recognition unit. The Ht is then built by substituting the corresponding sequence of 
coarse classes to each node of the Tt. Of course, each Ht node subsequence showing the 
repetition of the same symbol is collapsed into a unique node. The mapping from the Tt 
to the Ht is obtained through a pointer from a Tt node to the identifier of the Ht nodes 
it has generated. Figure 2.41 illustrates a simple example of a Tt and its corresponding 
Ht for a three-word lexicon. The numbers within the Tt nodes are the pointers to the 
corresponding Ht nodes. 

The control strategy can be summarized as follows: 

• For a given input micro-segment, the paths corresponding to active Ht nodes are 
expanded according to the constraints given by the SID model. Node expansion, 
controlled by a beam search threshold, generates a new list of active nodes. 

• Each path corresponding to an active Tt node could be expanded according to the 
transition defined for the HMMs, but the expansion is allowed only if the destination 
node has a pointer to an active Ht node. The node expansion, controlled by a beam 
search threshold, generates a new list of active Tt nodes. All active terminal nodes 
are given as input to the Dp. This step is iterated for each input frame belonging to 
the currently analyzed micro-segment. 

• The Dp receives as input all active Tt terminal nodes for each processed frame. The 
corresponding word hypotheses are then compared with the list of those already 
collected at previous frames. If no hypothesis exist in the list having the same word 
identifier and the same beginning frame, the new hypothesis is inserted, otherwise 
the new one updates the old one only if it has a better score. 

This tighter integration scheme is suitable for real-time implentation as the three 
steps outlined above can be easily pipelined. Its drawback is that the Hp constraints are 
looser than those imposed by the cascade integration. In fact, as the cascade integration 
allows only complete word hypotheses to be propagated from the Hp to the Tp, the full 
integration activates also the nodes corresponding to partial word hypotheses, that could 
be later pruned away. 

2.6.2 Word Hypothesis Normalization 

The score of a word hypothesis is computed by subtracting the score of the tree path 
at the root node to the score that the path attains at the terminal node. The log­
likelihood score L(W) of a word hypothesis obtained by the Viterbi algorithm is defined 
as the logarithm of the best path probability given the observed sequence of codewords 
0, L(W) = log maJCi P(Si, 0 I M), where Si is a state sequence within the word model 
M. Hence the likelihood of word hypotheses generated in different regions of the sentence 
cannot be compared as they refer to different observations. As the scores activate an island 
driven parser at the syntactic-semantic level of the system [18], they must be normalized 
to correctly represent the evidence of the hypotheses. 

Rather than using the Viterbi likelihood, the observation probability defined as: 

P(MIO) = P(OIM)P(M)f P(O) 

can be used. P(OIM) is computed by the Forward algorithm, while P(M) probabilities, 
in the present implementation, are uniformly distributed. Finally P( 0) can be derived 



www.manaraa.com

2.6 Continuous Speech 67 

Figure 2.41: Example of Ht/Tt mapping 

from the sum of the probabilities that each node of the tree attains at the ending frame of 
the considered word hypothesis. An efficient procedure for the computation of P(MIO) 
has been implemented that relies on the scaling coefficients introduced in [34] for the 
computation of the forward probabilities in the HMM training. The above probability 
can be computed in the Tp, by using the forward probability estimation within a word 
model, while the Viterbi decoding selects the best terminal node for the path expansion 
to the tree root. 

2.6.3 Lattice Filters 

Word lattices produced by the HMM verifier are of the order of 500-2000 words, with ref­
erence to sentences of 4-10 words. Two heuristic lexical filters, F1 and F2 (equation 2.42), 
are applied to the output of the verification process for pruning out unlikely hypotheses, 
so as to reduce the lattice size ~o the order of 200-500 words. Parameters of the lexical 
filters have been tuned to reduce as far as possible the lattice size without affecting correct 
word hypothesization rate. 

The following rules are applied, with reference to two conflicting hypotheses, Wa and 
W p , with log-score Sa and sp, and time limits t!, t! and t;, t; respectively. 
In F1 Wa filters out Wp if: 
a) tl < tl and t 2 > t 2 

a pap 

b) Sp < Sa - d,. 
In F2 Wa filters out Wp if: 
c) tl > t 1 + d1 and t 2 < t 2 - d1 p a _ p a _ 



www.manaraa.com

68 2 The Recognition Algorithms 

LATTICES ARE FILTERED BY RULE BASED LEXICAL FILTERS 
TO RULE OUT UNLIKELY HYPOTHESES 

118 Wa 128 

F1 lu, 
1,b Wb ~b 

F1: w. FILTERS OUTwb 

F2: w; FILTERS OUTw; 

1',b w' 
b 1'2b 

F2 lu, 
1'1 8 W' 1'28 a 

Figure 2.42: Lexical filters 

d) signal energy in [t~, t!] and [t;, t~] > eo 

e) no other word in the lattice ends in [t~, t!] or starts in [t;, t~] 
f) Sa < sp < Sa + d; 

dr, d!, d;, and eo are properly chosen thresholds. 

2.6.4 Efficiency Measures 

A desirable property of a good word hypothesizer for a continuous speech recognition and 
understanding system is that all uttered words appear in the lattice, they are correctly 
aligned and that the lattice is as small as possible. Furthermore, correct hypotheses should 
have better acoustic scores than wrong ones, so that their retrieval during a score-driven 
syntactic and semantic analysis is not delayed; this property directly affects the linguistic 
analysis performance, both in t~rms of successful understanding rate and of computing 
time. 

These considerations lead us to choose the "efficiency" measure introduced by Smith 
and Erman [50] for assessing the "quality" of a lattice. This quality can be measured 
by the level of appearance of correct hypotheses among all the others. So the RANK ~ 
of a correct hypothesis Hi can be defined as the number of wrong hypotheses H which 
compete with Hi and have a better score: 

(2.42) 

Comp(H, Hd is a predicate with value true if the overlapping in time of H and Hi is 
greater than the half of the shorter of the two. 



www.manaraa.com

2.6 Continuous Speech 

The efficiency of the i-th correct hypothesis Ei is defined as Ei = ~i 
The average efficiency of a lattice is defined as 

1 n 

E = -*LEi 
n 1e=1 

69 

where n is the number of words of the uttered sentence. Ei can be thought of as the 
amount of work that has to be done to retrieve the correct hypothesis Hi, in terms of 
number of wrong hypotheses that must be evaluated before Hi. 

The possible values for E range from 0, when no correct hypothesis has been generated, 
to 1, when all uttered words are the best in the lattice. One consideration can be made: it 
is questionable that only wrong conflicting hypotheses can delay the retrieval of a correct 
one: in fact, if a region R1 of the lattice has better scores, on average, than a different 
region R2 , then wrong hypotheses in R1 can delay the retrieval of correct hypotheses 
in R2 , even if they are not competing. Furthermore, the definition of competition is 
rather arbitrary. So a new measure has been defined, based on the concept of Degree 
of Appearance (DoA) of a correct word Hi, defined as the rank of Hi but relaxing the 
constraint of competition: 

DoAi = [H : s(H) > s(Hi)] (2.43) 

By taking the average on the whole lattice, we get the degree of appearance of the 
lattice 

1 n 

DoA = - * L DoAi 
n 1e=1 

The minimum degree of appearance is defined as DoAmin = mini DoAi , which 
measures the depth of the correct word having the worst score in the lattice. 

To find the sequence of correct words in the lattice, a forced parser has been imple­
mented, which is based on the concept of adjacency in time and on the scores of the 
hypotheses. The forced parsing problem has been approached as a search in a directed 
and weighted graph, whose nodes are the lexical hypotheses in the lattice. Two nodes 
are joined by an arc when they are instances of consecutive words in the uttered sen­
tence, and satisfy adjacency constraints in time, properly defined; the arc is weighted 
according to the amount of gap and overlap intervals between the corresponding lexical 
items. This problem of minimum distance search in a graph has been solved by Dynamic 
Programming and by the A * algorithm. 

2.6.5 Experimental Results 

In the following, experimental results computed over a corpus of 150 continuously uttered 
sentences are discussed. A speaker-dependent voice-activated data retrieval system is 
simulated, applied to a geographical semantic domain; the size of the lexicon is 1016 
words. 

The number of lexical hypotheses in the lattice affects the complexity of the under­
standing task, thus it is important to obtain small and reliably scored lattices, possibly 
avoiding missing semantically meaningful words. 



www.manaraa.com

70 2 The Recognition Algorithms 

mmm wmmm.wL-______ ~b~a~g~n~a--------
9=:u::a:;:le:..-__ --:, iseo s!i.!.!!!!!.. n~a::.:t~o ___ _ 
9=.;u::.:a::.,I ..... __ 1l!L flume '1ii!W!1IiI·1iI·' .. ,EjjI .. IIIi .. ' ..... ____ _ 

v~a::.:ll::.,i ___ gi9110 !!!L dalle !!l!t.. 

rienza 

I!!!- lesina nel ;:;;da;;;.i___ I!!!.- rive 
dei umbri dal !w!!!SI. 
!!!L cime ema amato 

guantl liUDi getta IIlDL. !rigng 
acgua esce ~ UIlL-
guante isole adda Y!!L 

Ivisio £be !!!L- IIs9 
agli Ul. D.!!L. aswL QrQyinsia 

liysna rnesim!! !lbl iW!!L-R2--
lona d!sl!. lunghe IIIL. UI 
S !!£.e umbm IDIDSl 

hanno 
b,amlo 

IlQQ.. 

aaa.. 
dIl-

n.gll negll maagiori ~~~-------~ 
IlioD 1!51!!. DAn.. "d,p 

Figure 2.43: Example of a lattice 

In Figure 2.43 an example lattice is presented corresponding to the question "Quali 
fiumi bagnano Torino 1" ("Which rivers wash Torino 1"). Words are ordered according 
to descending scores, starting from the top of the figure; correct words are enhanced while 
short connective words are not displayed. 

Two approaches have been compared: in the first one (1 step), the decoding algorithm 
is applied to the whole lexicon, represented by a tree of speaker-dependent HMMs, and 
lattice growth is limited only by a beam search control strategy. In the second approach (2 
step), the HMM decoding process is driven by a word preselection process based on coarse 
phonetic segmentation of speech into 6 rough classes. The cascade integration scheme is 
used for controlling the two processes, allowing an improvement of system efficiency at 
the expense of accuracy. In fact errors made in the preselection stage cannot be recovered 
during HMM decoding. 

Two different decoding algorithms have also been tested (Figure 2.44), namely the 
Viterbi (VIT) algorithm with log-likelihood score normalized according to the hypothesis 
duration and the Forward (FORW) algorithm with score normalization as outlined in the 
preceding subsection. 

Statistics collected from the 150 sentences are shown in Table 2.14. 
The top of the table shows statistics referring to computational load. The first and 

the second row represent the average number of DP operations computed at each 10 msec 
frame by the hypothesization and by the verification process respectively. The total DP 
activity is shown in the third row. In the fourth and fifth row the average number of 
active nodes for the two processes is displayed. The bottom part of the table refers to 
lattice measures. 

The Forward algorithm with score normalization yields a remarkable performance 
improvement on the number of missing words, on the lattice efficiency and on the degree 
of appearance (DoA). In particular, a few lattices in the one-step Forward case reach E = 
1: the n words of the sentence are the n best hypotheses, and they are correctly aligned 
in time. 



www.manaraa.com

2.6 Continuous Speech 

RECOGNITION STRATEGIES 
1) 1 STEP. VlTERBI DECODING 
2) 1 STEP. FORWARD DECODING 
3) 2 STEPS. VITERBI DECODING 
4) 2 STEPS. FORWARD DECODING 

1 STEP 2 STEPS 

WHOLE LEXICON REDUCED WORD SET 
DETAILED TREE DETAILED TREE 

VITERBI FORWARD 

~ ~ 
ONLY THE BEST PATH CUMULATIVE PATH SCORES 

IS RETAINED ARE COMPUTED 

THE 1-STEP STRATEGY REQUIRES ONLY VECTOR QUANTIZATION. 
THE 2-STEP STRATEGY REQUIRES VECTOR QUANTIZATION. 
PHONETIC LABELING. PHONETIC SEGMENTATION AND WORD 
PRESELECTION THROUGH THE LEXICAL ACCESS MODULE. 

Figure 2.44: Decoding algorithms 

VITERBI FORWARD 
One pass Two pass One pass Two pass 

Hp DP operations/frame 0 448 0 448 
Tp DP operations 4133 3379 2901 2457 

Total DP operations/frame 4133 3630 2901 2905 
Active Hp nodes 0 87 0 134 
Active Tp nodes 2370 1980 1619 1396 

Lattice size 310 275 433 369.5 
Missing words ( % ) 2.2 3.3 0.7 2.0 

Lattice efficiency 0.465 0.465 0.697 0.690 
Degree of appearance 0.149 0.151 0.479 0.464 

Successful forced parsing 89.3 % 83.3 % 96 % 89.3 % 

Table 2.14: Comparison of the one- and two-pass lexical access strategies 

71 



www.manaraa.com

72 

30 

II) 20 c 
a: o 
3: 

I.L o 

Z 10 

-6 -4 -2 

OVERLAPS 

o 2 

GAPS 

2 The Recognition Algorithms 

4 6 8 10 

Figure 2.45: Histogram of gaps and overlaps along the best path in the lattice 

The number of missing words increases, in the two-step approach, due to two kinds of 
problems: 

• bad phonetic segmentation, which results in a mismatching at the hypothesization 
level, with consequent pruning of the correct path during the search along the Ht 
tree; 

• bad starting or ending point detection of the H process, which reflects in a bad 
acoustic matching at the verification level, with consequent pruning of the correct 
path during the search in the Tt tree. 

The Viterbi verifier gives slightly worse results compared to the Forward one. The latter, 
besides, better aligns in time the correct words. A histogram of the gaps and of the 
overlaps (positive and negative side of the abscissa respectively) computed through the 
forced parser is plotted in Figure 2.45. 

Viterbi-scored hypotheses (dotted line) are shifted toward the increasing gap side 
with respect to the Forward-scored ones (continuous line). It is worth noting that a 
better alignment in time reflects in the possibility to adopt tighter adjacency constraints 
at the linguistic parser level, therefore reducing the number of sub-sentence hypotheses 
to be generated before obtaining the parse of the whole sentence. 

2.7 Conclusions 

A high-performance speaker-dependent continuous-speech word hypothesizer for large vo­
cabularies is the final result of the activities carried out in subtask 2.1 of project P26. 
Most of the algorithms and architectures developed in this framework are applicable also 
to high performance, large and very large isolated-word recognition tasks. The major 
results of this sub-task can be summarized as follows: 

• Use of state-of-the art signal processing techniques for speech analysis. 



www.manaraa.com

2.7 Conclusions 73 

• Novel techniques for phonetic classification, phonetic matching, and lexical access to 
large vocabularies. A phonetic classifier that segments and labels speech in terms 
of six broad phonetic classes attains 86.2 % and 93.7 % correct classification rates 
when the first best choice and the two best choices are taken into account respectively. 
Lexical access is performed by means of an original extension to 3 dimensions of the 
classical Dynamic Programming algorithm. 

• Sub-word speech units optimization. 24 stationary units and 101 transitory units 
have been carefully selected and modeled. 

• Efficient control strategies for interaction between lexical access and detailed Hid­
den Markov Model verification. 82% of computational complexity reduction can be 
achieved by means of the lexical access module which is integrated with the verifi­
cation module for real-time oriented implementations. 

• Vocabulary flexibility. Changing the lexicon is a simple operation that needs only the 
new list of words in their orthogaphic form, because every word in a given language 
can be synthesized as a HMM chain of sub-words units; 

• Automatic training. No hand-labeling of speech data is required; automatic labeling 
is obtained as a side-effect of the Forward-Backward algorithm used for statistical 
training of Hidden Markov Models. 

• Adaptability to different languages by proper definition of new sub-word units and 
by replacement of orthographic-to-phonetic rules. 

• Capability of real-time performance with a multi-DSP architecture and of parallel 
implement ability of the algorithms. 

• Efficient continuous speech word hypothesization and connection with linguistic mod-
ules. 

A multi-speaker speech data ·base has been collected, and graphic packages have been 
developed for interactive monitoring of each level of processing, from analog waveforms 
to lattices of lexical hypotheses. Demonstrators have been defined and implemented for 
the final technical meeting scheduled in October 1988. Extensive experiments have been 
carried out for tuning system parameters, and system performance has been assessed at 
~ach stage of processing. 

System performance complies with the specified project target, and can be summa­
rized as follows: 

• isolated word task: Several lexicons, ranging from 1K words to 18K words have been 
used in the tests. Average recognition rates range from 95.3% for the 1K lexicon to 
85% for the 18K lexicon with respect to the best-scored word; corresponding figures 
with respect to the 5 best-scored words are 99.2% and 95.3% respectively. 

• continuous speech task: correct words are hypothesized and properly aligned with 
a 96.4% success rate. This results in an 80% successful understanding rate when 
linguistic processing is applied. Average lattice size, with respect to uttered sentences 
of 5.7 words on average, is less than 400 words. 

Recognition tests were performed in a typical office environment by using a close-talk 
microphone. Continuous sentences were produced at normal speed and with naturalness. 



www.manaraa.com

74 2 The Recognition Algorithms 

Algorithms and architectures are real-time oriented, and most computationally expensive 
procedures are suitable for a parallel implementation. 



www.manaraa.com

Bibliography 

1. "Annex to 1st six-month report of ESPRIT Project P26." Technical Report, ESPRIT 
P26, 1985 

2. "Annex to 2nd half-year report of ESPRIT project P26." Technical Report, ESPRIT 
P26, 1986 

3. "Deliverable 11a: preliminary report on studied algorithms and first evaluation ex­
periment of speech data reduction stage." Technical Report, ESPRIT P26, 1986 

4. "Preliminary report on algorithms for speech, data reduction." Technical Report, 
ESPRIT P26, 1984 

5. L.R. Bahl, F. Jelinek, R. Mercer: "A maximum likelihood approach to continuous 
speech recognition." IEEE Trans. on Pattern, Analysis and Machine Intelligence, 
vol. 5, pp. 179-190, March 1983 

6. J.M. Baker: "State ofthe art speech recognition, U.S. research and business update." 
Proc. of the European Conf. on Speech Technology, pp. 440-447, Edinburgh (UK), 
Sept. 1987 

7. R. Billi, G. Massia, F. Nesti: "Word preselection for large vocabulary speech recog­
nition." Proc. of the ICASSP '86, pp. 65-68, Tokyo, Japan, Apr. 1986 

8. D.M. Carter: "The use of speech knowledge in automatic speech recognition." Com­
puter Speech and Language, vol. 2, pp. 1-11, March 1987 

9. A.M. Coila, D. Sciarra: "Automatic diphone bootstrapping for speaker adaptive con­
tinuous speech recognition." Proc. of the ICASSP '84, pp. 35.2.1-35.2.4, San Diego, 
Ca., March 1984 

10. M. Cravero, L. Fissore, R. Pieraccini, C. Scagliola: "Syntax driven recognition of 
connected words by Markov models." Proc. of the ICASSP '84, pp. 35.5.1-35.5.4, 
San Diego, Ca., March 1984 

11. M. Cravero, R. Pieraccini, F. Raineri: "Definition and evaluation of phonetic units 
for speech recognition by hidden Markov models." Proc. of the ICASSP '86, pp. 2235-
2238, Tokyo, Japan, Apr. 1986 

12. M. Cravero, R. Pieraccini, F. Raineri: "Definition of recognition units through two 
levels of phonemic description.": Proc. of the Montreal Symposium on Speech Tech­
nology, pp. 53-54, Montreal, Canada, July 1986, 

13. K.H. Davis, P. Mermelstein: "Comparison of parametric representation for mono­
syllabic word recognition in continously spoken sentences." IEEE Trans. Acoust., 
Speech and Signal Processing, vol.28, pp 357-366, Aug. 1981 



www.manaraa.com

76 Bibliography 

14. P. Demichelis, P. Laface, E. Piccolo, G. Micca, R. Pieraccini: "Recognition of words 
in a large vocabulary." Int. Workshop on Recent Advances and Applications of Speech 
Recognition, pp. 115-123, Rome, Italy, May 1986 

15. A.-M. Derouault: "Context-dependent phonetic Markov models for large vocabulary 
speech recognition." Proc. of the IGASSP '87, pp. 360-363, Dallas, Tex., Apr. 1987 

16. P. D'Orta, M. Ferretti, S. Scarci: "Phoneme classification for real-time speech recog­
nition of Italian." Proc. of the IGASSP '87, pp 81-84, Dallas, Tex., Apr. 1987 

17. L. Fissore, E. Giachin, P. Laface, G. Micca, R. Pieraccini, C. Rullent: "Experimental 
results on large vocabulary continuous speech recognition and understanding." Proc. 
of the IGASSP '88, pp. 414-417, New York, NY, Apr. 1988 

18. L. Fissore, P. Laface, G. Micca, R. Pieraccini: "Interaction between fast lexical access 
and word verification in large vocabulary continuous speech recognition." Proc. of 
the IGASSP '88, pp. 279-282, New York, NY, Apr. 1988 

19. K. Fukunaga: Introduction to Statistical Pattern Recognition. Academic Press, 1972 

20. A. Giordana, P: Laface, L. Saitta: "Discrimination of words in a large vocabulary 
using phonetic descriptions." Int. Journal of Man-Machine Studies, vol.24, pp. 453-
473, May 1986 

21. V.N. Gupta, M. Lenning, P. Mermelstein: "Integration of acoustic information in 
a large vocabulary word recognizer." Proc. of the IGASSP '87, pp. 697-700, Dallas, 
Tex., Apr. 1987 

22. D.P. Huttenlocher, V.W. Zue: "A model of lexical access from partial phonetic in­
formation." Proc. of the IGASSP '84, pp. 26.4.1-26.4.4, San Diego, Ca., March 1984 

23. F. Jelinek: "Continuous speech recognition by statistical methods." IEEE Proc., 
vol.64, pp. 532-556, Apr. 1976 

24. F. Jelinek: "The development of an experimental discrete dictation recognizer." IEEE 
Proc., vol. 73, pp. 1616-1624, Nov. 1985 

25. A. Kaltenmeier: "Acoustic/phonetic transcription using a polynomial classifier and 
hidden Markov models." Proc. of the Montreal Symposium on Speech Technology, 
pp. 95-96, Montreal, Canada, July 1986 

26. T. Kaneko, N.R. Dixon: "A Hierarchical decision approach to large-vocabulary dis­
crete utterance recognition." IEEE 'ITans. Acoust., Speech, Signal Processing, vol.31, 
pp. 1061-1066, May 1983 

27. D.H. Klatt: "Overview of the ARPA speech understanding project." In: W.A. Lea 
(ed.) 'ITends in Speech Recognition, pp. 249-271. Prentice Hall, 1979 

28. D.H. Klatt: "SCRIBER and LAFS: two new approaches to speech analysis." In: 
W.A. Lea (ed.) 'ITends in Speech Recognition, pp. 529-555. Prentice Hall, 1979 

29. T. Kohonen, H. Rittinen, E. Reuhkala, S. Haltsonen: "On-line recognition of spoken 
words from a large vocabulary." Information Sciences, vol. 22, pp. 3-30, July-Aug. 
1984 

30. P. Laface, G. Micca, R. Pieraccini: "Experimental results' on a large lexicon access 
task." Proc. of the IGASSP '87, pp. 809-812, Dallas, Tex., Apr. 1987 



www.manaraa.com

Bibliography 77 

31. H. Lagger, A. Waibel: "A coarse phonetic knowledge source for template independent 
large vocabulary word recognition." Proc. of the ICASSP '85, pp. 862-865, Tampa, 
Fla., March 1985 

32. J.N. Larar: "Lexical access using broad acoustic-phonetic classification." Computer 
Speech and Language, voU, pp. 47-59, March 1986 

33. S. Levinson: "Structural methods in automatic speech recognition." Proceedings of 
the IEEE, vo1.73, pp. 1625-1649, Nov. 1985 

34. S.E. Levinson, L.R. Rabiner, M.M. Sondhi: "Introduction to the application of the 
theory of probabilistic functions of a Markov process to automatic speech recogni­
tion." Bell System Technical Journal, vo1.62, pp. 1035-1074, April 1983 

35. Y. Linde, A. Buzo, R.M. Gray: "An algorithm for vector quantizer design." IEEE 
7rans. on Communications, vo1.28, pp. 88-95, Jan. 1980 

36. S.M. Marcus: "Associative models and the time course of speech." Bibliotheca Pho­
netica, voU2, pp. 36-52, 1985 

37. J.J. Mariani: "Speech technology in Europe." Proc. of the European Con/. on Speech 
Technology, pp. 431-439, Edinburgh (UK), Sept. 1987 

38. W.D. Marslen-Wilson: "Speech understanding as a psychological process." In: J. C. 
Simon (ed.) Spoken Language Generation and -Understanding, pp. 39-67. D.Reidel , 
1980 

39. B. Merialdo, A.-M. Derouault, S. Soudoplatoff: "Phoneme classification using 
Markov Models." Proc. of the ICASSP '86, pp. 2759-2762, Tokyo, Japan, Apr. 1986 

40. G. Micca, R. Pieraccini, P. Laface, L. Saitta, A. Kaltenmeier: "Word hypothesiza­
tion and verification in a large vocabulary." Proc. of the 3rd Esprit Technical Week, 
pp. 845-853, Brussels, Belgium, Sept. 1986 

41. R.K. Moore, M.J. Russel, M.J. Tomlinson: "The discriminative network: a mecha­
nism for focusing recognition in whole word pattern matching." Proc. of the ICASSP 
'83, pp. 1041-1044, Boston, Mass., Apr. 1983 

42. R. Pieraccini, F. Raineri, A. Giordana, P. Laface, A. Kaltenmeier, H. Mangold: 
"Algorithms for speech data reduction and recognition." 2nd Esprit Technical Week, 
Brussels, Belgium, Sept. 1985 

43. D.B. Pisoni, H.C. Nusbaum, P.A. Luce, L.M. Slowiaczek: "Speech perception, word 
recognition and the structure of the lexicon." I Speech Communication, VolA, pp. 75-
96, Aug. 1985 

44. A.E. Rosenberg, A.M. Colla: "A connected speech recognition system based on spot­
ting diphone-like segments - preliminary results." Proc. of the ICASSP '87, pp. 85-88, 
Dallas, Tex., Apr. 1987 

45. M.J. Russel, R.K. Moore: "Explicit modeling of state occupancy in Hidden Markov 
Models for automatic speech recognition." Proc. of the ICASSP '85, pp. 5-8, Tampa, 
Fla., March 1985 . 

46. C. Scagliola: "Language models and search algorithms for real time speech recogni­
tion." Int. Journ. Man-Machine Studies, Vo1.22, pp. 523-547, May 1985 



www.manaraa.com

78 Bibliography 

47. G. Schukat-Talamazzini, H. Niemann: "Generating Word Hypotheses in Continuous 
Speech." Proc. of the ICASSP '86, pp. 1565-1568, Tokyo, Japan, Apr. 1986 

48. R. Schwartz, Y. Chow, S. Roucos, M. Krasner, J. Makhoul: "Improved Hidden 
Markov Modeling of phonemes for continuous speech recognition." Proc. of the 
ICASSP '84, pp. 35.6.1-35.6.4, San Diego, Ca., March 1984 

49. D.W. Shipman, V. Zue: "Properties of large lexicons: Implications for advanced 
isolated word recognition systems." Proc. of the ICASSP '82, pp. 546-549, Paris, 
France, May 1982 

50. A.R. Smith, L.D. Erman: "Noah - A bottom up word hypothesizer for large vocabu­
lary speech understanding systems." IEEE Trans. on Pattern Analysis and Machine 
Intelligence, vol.3, pp. 41-51, Jan. 1981 

51. S. Soudoplatoff: "Markov modeling of continuous parameters in speech recognition." 
Proc. of the ICASSP '86, pp. 45-48, Tokyo, Japan, Apr. 1986 

52. A. Waibel: "Prosodic knowledge sources for word hypothesization in a continuous 
speech recogniti9n system." Proc. of the ICASSP '87, pp. 856-859, Dallas, Tex., Apr. 
1987 

53. R. Zelinsky, F. Class: "A segmentation algorithm for connected word recognition 
based on estimation principles." IEEE Trans. on Acoust., Speech, Signal Processing, 
vol.31, pp. 818-827, Aug. 1983 

54. V. Zue: "The use of speech knowledge in automatic speech recognition." IEEE Pro­
ceedings, vol.73, pp. 1602-1615, Nov. 1985 



www.manaraa.com

Chapter 3 

The Real Time Implementation of the Recognition 
Stage 

Robert Breitschaedel (Daimler Benz), Alberto Ciaramella (CSELT), 
Davide Clementino (CSELT), Roberto Pacifici (CSELT), 
Jean Pierre Riviere (Thomson-CSF), Giovanni Venuti (CSELT) 

3.1 Introduction 

Subtasks 2.2 and 2.3 of the P26 project have been devoted to the design of a hardware 
architecture and to the implementation on it, in real time, of recognition algorithms al­
ready developed and experimented within Subtask 2.1.: this real time implementation of 
the recognition stage will be called RICO in the following. Table 3.1 summarizes the key 
points we considered when we started our work, i.e. algorithmic requirements, project 
development constraints, hardware and software technology limits; they contributed to 
the definition of RICO main characteristics, summarized in Table 3.2: in the following 
of this paragraph we will detail these considerations. We started with the considera­
tion that recognition algorithms can be distinguished into two principal blocks, a first 
"feature extraction" block till vector quantization and phonetic classification of frames, 
and a following "search" block extracting the lattice of most likely words using dynamic 
programming: this system "cut" corresponds to the minimal flow of data and besides 
separates blocks with different computational characteristics. The first block in fact is 
characterized by predictable execution times, cyclic computations, vector data structures, 
not-too-Iarge data addressing requirements: this block in fact implements "traditional" 
DSP algorithms, for which the DSP chips fit well. Instead memory and computational re­
quirements of the second block heavily depend on the recognition vocabulary size and on 
the speaking style (continuous speech of course is more demanding than isolated words) 
and also exhibit a time dependency for the same utterance; in each case, for the real time 
recognition of continuous speech with a 1K words vocabulary, the computational require­
ments are quite demanding, although were not clearly defined at the beginning of the 
project. This block could have been implemented by using chips customized [1, 2, 3, 4, 5] 
or optimized [6] for the dynamic programming algorithm: we had also the possibility of 
using an internally developed chip of this kind [7, 8]. We preferred however to retain the 
maximum of the flexibility allowed by a DSP implementation, although in this case the 
computation throughput was smaller and some of the DSP capability remained unused 
(typically the fast multiplier), whilst other features would be welcome, as wider data 
memory addressing. Hence we chose the DSP [10, 11] with the widest data addressing 



www.manaraa.com

80 3 The Real Time Implementation of the Recognition Stage 

Algorithmic 
requirements 

Project development 
constraints 

Hardware limits of DSP 
technology in P26 time frame 

Firmware limits of DSP 
technology in P26 time frame 

Features extraction I Predictable execution time 

Lattice extraction 

Fast hardware and firmware 
prototyping 

Ease of expandibility 

Reduced addressing space 

Fixed point computations 

Large data addressing 

Execution time both task and time 
dependent 

DSP assembler programming 

Lack of multiprocessor operating 
system 

Table 3.1: Key points affecting RICO architecture 

Hardware architecture 
and implementation 

Software architecture 
and implementation 

Common bus multiprocessor 

Local plus global distributed biport 
memory structure 

Fast common bus (VME) 

Asymmetric multiprocessor equipped with: 
- general purpose master CPU (68020 based) 
- custom DSP slave boards (TMS32020 based) 

Large grain task partition 

Task synchronization through busy waiting 

Assembly programming for the slave CPUs 

Pascal programmming for the master CPU 

Table 3.2: RICO main characteristics 



www.manaraa.com

3.1 Introduction 81 

PROCESSOR 1 PROCESSORN 

COMMON BUS 

Figure 3.1: Common bus multiprocessor, with local plus global distributed biport memory 

space available at the beginning of the project (64K words), and we further increased its 
data addressing capability by an external page register [9]. As a result we defined as a 
common iterable block a DSP board capable of supporting in real time all the computa­
tions foreseen at the beginning of the project for the feature extraction stage and with 
the data addressing capability required by the dynamic programming stage: for achieving 
real time this last computation however can be distributed and parallelized in different 
DSP boards, as required by the specific application task. This tasks partition could be 
mapped to different multiprocessor hardware architectures proposed in the literature, as 
for example tree connected [12], multiple bus connected [13], processor clusters [14]. We 
chose the simplest single bus architecture, and to be more specific a single bus architecture 
with local memories and a distributed global memory, where distributed memories allo­
cated in different boards are biported to the common bus. This kind of architecture is the 
most efficient between single bus architectures [29], since no contention arises either on 
local buses or in biport memory accesses, but in the common bus access only. Figure 3.1 
exemplifies such a kind of architecture. We further reduced common bus contentions: 

• by using secondary buses for fast local transfers [18], 

• by using a fast primary bus, the VME bus [15, 16, 17], which could carry heavier 
traffic before saturating it. 



www.manaraa.com

82 3 The Real Time Implementation of the Recognition Stage 

The implemented multiprocessor is asymmetric, with a general purpose master for han­
dling i/o and mass memory accesses with standard hardware and software facilities, and 
some slaves DSP for speeding up more computational intensive algorithms: DSPs in fact 
are an order of magnitude faster than general purpose microprocessors. Since the VME 
bus is a widely accepted standard, we could use as far as possible commercially avail­
able boards for the master, the input-output and the memory, whilst we developed only 
two kinds of project-specific boards, i.e. the DSP and the converter. In addition to the 
hardware we developed both the system control firmware, and the algorithm firmware. 
The algorithm firmware was split between the Motorola master (in Pascal language [28]) 
for less time-critical sections and the DSP (in assembler language) for more time-critical 
ones: we point out that integer arithmetic and assembler language programming were a 
typical limitation of DSPs, whereas today DSPs allow a faster firmware development cycle 
since they support floating point arithmetic and C language [19, 20, 21, 22]. As a final 
result we demonstrated in real time and with a good recognition accuracy the intended 
recognition task of lK words continuous speech using a not-so-expansive implementation. 
This is a clear indication that present technology is already sufficient to build a realistic 
speech recognition system for large-vocabulary continuous speech, and that technological 
advances will simplify this task more and more: some of us in fact are now experimenting 
this trend in new ESPRIT projects [24]. In the following we will present an overview of 
the system implemented, then we will detail both the hardware and the firmware blocks, 
finally we will show the system throughput. 

3.2 System Overview 

3.2.1 Functions Overview 

RICO performs several functions, summarized in Table 3.3: first of all in recognition 
mode it hypothesizes the uttered words, forwarding to the following understanding stage 
the most likely ones in the application vocabulary; these are organized as a lattice for 
the continuous speech and as a list for the isolated words case. Three different real time 
recognition algorithms have been implemented: 

• the single-step recognition for isolated words, 

• the two-step recognition for isolated words, 

• the single-step recognition for continuous speech. 

All these tasks have been demonstrated in speaker-dependent mode with a high quality 
head-mounted microphone input. The input utterance is presently limited by an initial 
keystroke for the isolated words task and by an initial and a final keystroke for the 
continuous speech task. As detailed before, in the single-step recognition algorithm the 
whole application vocabulary is verified. In the two-step recognition algorithm on the 
other hand a subset of the whole vocabulary is selected first using a coarse preselection, 
then a more detailed verification is performed on this subset: this last strategy requires 
more computations for small vocabularies, but becomes more and more efficient as the 
vocabulary increases. The vocabulary size for which the single-step approach becomes 



www.manaraa.com

3.2 System Overview 83 

- Single step for isolated words 

Real time recognition -Two steps for isolated words 

- Single step for connected words 

- Single step for isolated words 

Off-line recognition - Two steps for isolated words 

- Single step for connected words 

Acquisition and training 

System testing 

MultiDSP program loading facility 

Table 3.3: Summary of implemented functions 

more efficient than the two-step approach is larger in the continuous speech case than in 
the isolated words case: hence for continuous speech we have implemented only the simpler 
one-step strategy, given that in this project we aimed at vocabularies of the order of 1 K 
words and in this case the single-step strategy is both easier to implement and faster in 
execution time. Besides real time recognition, RICO performs other functions: first it can 
perform off-line recognition, using prerecorded speech parameters as input: this is useful 
in order to characterize the system both in accuracy and in speed and to tune some system 
parameters. Then RICO can be used to drive the speaker acquisition session, displaying 
the words to be uttered, synchronizing the utterance with start and stop keystrokes, and 
extracting the parameters of the uttered words: at the end of the session this parameter 
database is sent to a host VAX, which performs the parameter training; these parameters 
are finally transmitted back to RICO for the following recognition phase. Figure 3.2 
summarizes the system behaviour in these three cases: the connections are enabled only 
if marked by the number corresponding to the case (i.e. 1 for on-line recognition, 2 for 
off-line recognition, 3 for parameter training). Finally we have implemented a system test 
for checking the system and a multiDSP loading facility, for transferring object files from 
the RICO mass memory to a specific DSP. 

3.2.2 Architecture Overview 

As anticipated, RICO is centered around a VME bus and is composed of general purpose 
boards (CPU, central memory and peripheral interfaces) and of boards explicitly devel­
oped in this project, which are the digital signal processor and the acquisition boards [9J. 
The general purpose boards are: 



www.manaraa.com

84 

SPEECH 

3 The Real Time Implementation of the Recognition Stage 

1.3 1.2 

RICO 
SYSTEM 

2 2 

3 1.2 

UTTERANCE SPEAKERS 
PARAMETERS PARAMETERS 

3 3 

VAX PARAMETER 
TRAINING 

RECOGNIZED 
WORDS 

COL1.ECTED 
STAnSnCS 

Figure 3.2: Block diagram sketching system functions 

• a master CPU board, using the Motorola 68020 [25] and 1 Mbyte of internal RAM, 
biported also to the VME bus, 

• a mass memory controller, which controls a hard disk and a floppy disk, 

• an input/output board, for data transfer to the host and other functions, 

• a VME/VMX biport 1 Mbyte RAM board. 

The special purpose boards are: 

• the acquisition board, whose functions can be expanded for debugging purposes by 
a piggy-back board for buffering speech samples, 

• three copies of digital signal processor boards, of which the first is used for features 
extraction and the remaining two are used for D HMM scoring. 

Local transfers are done through two VMX buses: the first allows the transfer of samples 
from the acquisition to the feature extraction board, the second allows the extension of the 
memory of the other two DSP boards used for verification with the VME/VMX biport 
RAM. As anticipated, memories can be distinguished into local, accessed by a specific 
processor, and global, addressed by all processors through the VME bus; the global area 
is distributed to different boards, where they behave as biport memories. Local memories 
and biport memories have been in fact implemented in DSP boards, whilst the VME/VMX 
biport 1 Mbyte board is used as an expansion of DSP boards used for DHMM scoring. 
The system can be expanded and configured differently for different tasks; Fig. 3.3 shows 
the final hardware configuration. Figure 3.4 shows instead the principal functional blocks 
required in the two-step verification: the gray area characterizes blocks implemented in the 



www.manaraa.com

3.2 System Overview 

CONSOLEr-----------~ 

HOST 

SPEECH 
INPUT 

MASTER CPU 
WITH 

PRIVATE MEMORY 

RANDOM 
ACCESS 
MEMORY 

85 

FLOPPY DISK 
DRIVER 

WINCHESTER 
DISK DRIVER 

VMX LOCAL BUS (SECOND) 

Figure 3.3: Final hardware configuration 

master CPU. Feature extraction is performed by the DSPI and is composed by DCTs and 
energy computation, vector quantization and classification; the hypothesization stage is 
performed by the master and is composed by frame segmentation, cohort hypothesization 
and diphones lattice building; discrete hidden Markov models (DHMM) verification is 
composed by the diphone tree scanner, implemented in the master, and by the diphones 
verification, implemented in the DSP2. In order to speed up this computation some 
DSP2 can be put in parallel: in our final implementation we experimented two DSP2 in 
parallel and we called them DSP2-A and DSP2-Bl. This decomposition of the DHMM 
verification into two levels, the less computation-intensive one on the master, and the 
more computation-intensive parallelized in some fast slaves, is well suited to a real time 
multiprocessor implementation. Two-level decomposition of the verification stage has 
been used in all three cases for the real time implementation and is not to be confused 
with the one-step and the two-step approaches. In fact the one-step approach can be 
obtained from the two-step approach by completely discarding the hypothesization stage 
and by scanning only the precompiled diphone tree describing all the vocabulary, instead 
of traversing the on-line compiled diphone tree describing the subset of words evaluated 
by the hypothesization stage. Table 3.4 summarizes the blocks used for the three real 
time recognition applications implemented, with the specification of the board hosting 
them; of course the system can evolve and demonstrate a further speed-up by porting 
other functions from the system master to DSP boards. Off-line recognition differs from 
on-line recognition in the system control that in this case activates the DSP2 only by 
using prerecorded acquisition results; the acquisition function instead requires only the 
parameters extraction section driven by a suitable system control, so in this case the DSPI 
only is used. 

1 Just not to confuse readers, we point out that in some earlier P26 documents and papers we referred 
to these DSP as DSP3-A and DSP3-B or even DSP3 and DSP4 for historical reasons. The notation used 
in this document however seems more appropriate. 



www.manaraa.com

86 3 The Real Time Implementation of the Recognition Stage 

r;~~~E;-~:;;;:~~ 1-----';';"OTHESIZAT10; sm~ -- ----: 
" 

CLASSIFIER ' I 
PARAMETERS , , ~~I 

I FR:~N~~GH SEGMENTER I 
, , I CLASSIFIER , 

i AID CONVERTER , 
SPEECH, WITH FRAME OCT 

AND ENERGY I VERlfltCATtON STAGE: ,.... __ ..... _-...... 
EVALUATION ......... __ _ 

OCT VECTOR 
AND ENERGY 

SCALAR QUANTIZER 

, 
,....-----'-~-....., , 

, , 
I ' 

" 
I 

CODE BOOK I HIDDEN MARKOV , L: _______________ . __ . __ . __ ._~~~ __ .U 

Figure 3.4: Principal function blocks for the two steps verification 



www.manaraa.com

3.2 System Overview 87 

SINGLE STEP TWO STEPS SINGLE STEP IMPLEMENTED 
MAIN FUNCTIONS ISOLATED WORDS ISOLATED WORDS CONT. SPEECH IN BOARD 

SYSTEM 
CXNJR:l. Y (1) Y (2) Y (3) MASTER 

ocr NlJeEAGY 
EXTRACTION (0) Y Y Y OSP1 

IIECIOl 
QUANTIZATION (0) Y Y Y DSP1 

FRANE 
CLASSIFICATION (0) N Y N DSP1 

FRANE 
SEGMENTATION (00) N Y N MASTER 

CXHJlS 
HYPOTHESIZ. (00) N Y N MASTER 

ON UNE OIPHONES 
LATTICE BUILDING (00) N Y N MASTER 

DlPHONE TREE 
SCANNER (000) Y Y Y MASTER 

DIPHONE 
HIDDEN MARKOV M. Y Y Y DSP2 

(0) Features extraction stage 

VERIFICATION (000) 
(0.) Hypothesization stage 

LATTICE 
FILTERING N N Y MASTER (000) Verification stage 

Table 3.4: Comparison of blocks used in different sub cases 

3.2.3 System Control and Synchronization Methods 

The system is controlled by the 68020 master CPU, running the real time multiuser multi­
tasking operating system VERSADOS [26] and a ROM resident monitor; the DSP boards 
and the acquisition system behave as intelligent system peripherals, which exchange data 
and synchronizations by reading and writing VME addressable locations. The acquisi­
tion board is controlled by an internal ROM resident monitor, which decodes commands 
received through the VME bus; on the other hand the DSP board exploits a PROM res­
ident kernel with self test and loader functions only: in this way the DSP's program and 
data configuration is is totally controlled by the master CPU software. For each DSP 
we have a command and status area, allocated in a predefined area of the VME biport 
memory; the specific format of this area depends on the application program and in fact 
it is different for DSPl and for DSP2. In general the command and status area controls 
these functions: 

• the DSP program bootstrap, from a VME addressable buffer to the DSP internal 
program area; 

• the data bootstrap from a VME addressable buffer to a DSP internal data area, 
used for loading the codebook for the DSPl and the DHMM for the DSP2; 

• the input and output buffers configuration and enabling; these buffers can be in fact 
enabled or disabled by suitably writing the corresponding command area; enabled 
buffers can be allocated everywhere in the VM~ addressable area; 



www.manaraa.com

88 3 The Real Time Implementation of the Recognition Stage 

MEMORY 

I FLAG f--~ 
j -...I 

i= - z 0 ;:) 

~ C 
w 
t:: 

it < a: w 
~ a: ~ 

~ COMMON BUS 
"""- ... .. .. 

Pl P2 

Figure 3.5: Synchronisation traffic for flag addressed through a common bus only 

• the DSP program control: when the programs and data are loaded and the buffers 
are configured, we can start up the system by suitably writing in the command area; 
also in this case we can have some different possibilities, as for example "run forever 
until stopped" (used in the real time application), or "run for a definite number of 
frames" (used in the debugging). 

Different boards are synchronized through flags by the busy waiting mechanism [23], in 
which the processor P2 to be synchronized continuously reads the flag until it is in reset 
state and then starts the following computations when it reads that the synchronizing 
processor PI has set the flag; at the same time P2 resets the flag. This is the simplest 
synchronization mechanism to implement, but if the flags are not properly allocated it 
could generate excessive bus traffic for synchronization purpose only, due to the burst 
of flag readings: this happens for example if the flag is allocated in a memory which 
is addressed through the common bus by both processors (see Fig. 3.5). In order to 
avoid this problem we used VME biport memories and whenever possible we allocated 
the synchronization flags in the biport memory housed in th~ same board of the processor 
to be synchronized: in such a way the flag synchronization reading burst remains internal 
to the board and does not affect the bus traffic (Fig. 3.6). Synchronization flags are used 
in our system both to start up and to stop in an orderly way the different blocks, and to 
validate messages between different blocks. 

3.2.4 System Run-Time Evolution 

As far the run-time evolution is concerned, the system can be distinguished into two 
sections (Fig. 3.7): 



www.manaraa.com

3.2 System Overview 89 

COMMON BUS ... .. - 4 ~ 4 .. 
.. 

., 

BIPORT MEMORY 

WRITE 1 J I FLAG 

- 4 ~ 
~ 
1= z 0 
::) 

i CI 

:l ., ~ a:: ., , 
P1 P2 

Figure 3.6: Synchronisation traffic for flag allocated in the P2 biport memory 

• a first section, composed by the DSP1, which is frame synchronous, since it is assured 
that it extracts frame parameters each 10 ms, 

• a second section, composed by the remaining computations, and centered on the 
frame verification, which is frame asynchronous since its timing is not predictable; 
as a rule of thumb beginning and ending frames of the utterance spend less time in 
the verification stage than central ones. 

The verification stage computational time is frame dependent since not all the diphones 
are verified at each frame, but only the active ones: active diphones are those which have 
at least one state above a beam search probability threshold. The verification stage is 
composed by the diphone tree scanner and by the more computational intensive discrete 
hidden Markov model (DHMM) verifier (Fig. 3.7). On a frame basis the diphone tree 
scanner sends to the verifier through the broadcast area both the frame code vector and 
the beam search threshold, then identifies the diphones whose verification has to start and 
puts them in a list, called the "push list", transmitted to the diphone verifier. This last 
block performs dynamic programming on diphones in the push list and on the diphones 
already active at the end of the previous frame; then updates the active diphones by 
discarding those from which all the state probabilities are below the best path by a given 
threshold and finally identifies the dip hones reaching the final state: these are organized 
in a "pop" list and sent to the diphone scanner, which from the pop list evaluates the 
push list of the next frame (Fig. 3.7). We implemented two kind of sequencing between 
the synchronous and the asynchronous sections: first a simpler, but less time efficient 
"serialized" implementation, then a more efficient "interleaved" one, which is the final one 
released: Figure 3.8 summarizes the frame timing in both cases. In the serialized case the 
asynchronous computation on the first frame starts when the synchronous computation 
on the last frame ends, whilst in the interleaved case. the asynchronous computation on 



www.manaraa.com

90 3 The Real Time Implementation of the Recognition Stage 

,-- ---, 
I HVPOTHI!SI%ATION I, 

,-I .TAQ! -

I I , L... _____ .J 

CODEVECTOfIS 
FIFO 

Figure 3.7: System interplay 



www.manaraa.com

3.2 System Overview 91 

a) 'SERIALIZED" 

DSPl ~I -_-_-_-_-_, - ... 1-_-..... 
2 3 4 5 n- 1 n 

DSP2 
2 3 4 5 n-1 n 

b) 'INTERLEAVED" 

DSP 1 1 I I 1 I- I I 

1 I 2 I 3 I 4 1 5 I n- 1 \ n \ 

1 I \ 
\ 

I 
I 

I \ 
I \ 

I I \ 

DSP2 1--1 I--t , I :Ii 
2 3 4 5 n- 1 n 

Figure 3.8: System timing 

the first frame starts when the synchronous computation on the first frame ends and 
so on. We can see also that in the serialized case all DSP2 frame computations are 
performed consecutively since the input code vectors are all available from the beginning, 
whilst in the interleaved case some idle time can appear in DSP2 computations, and this 
happens when DSP1 has not yet finished the code vector evaluation of the next frame (see 
Fig. 3.8). In every case it is obvious that the recognition delay of the system is reduced 
in the interleaved case and this situation is even better when there is a balance between 
the frame computational time of the DSP1 and the (average) frame computational time 
of DSP2: for the continuous speech application with 1000 words we approximate this 
balance by putting two DSP2 in parallel. All these considerations can be extended from 
the single-step to the more involved two-step approach: in this last case we have also 
to take into account the hypothesization stage (dashed block in Fig. 3.7) which changes 
the diphone tree description on a phonetic segment basis2 : in this last case however we 
cannot oversee master computational times due to the hypothesization stage. 

2 A phonetic segment typically lasts some frames (e.g. 5-10 frames). 



www.manaraa.com

92 3 The Real Time Implementation of the Recognition Stage 

3.2.5 Details on the Asynchronous Stage Activity 

We will detail now a model of the asynchronous stage activity in order to explain both its 
computational load frame behavior and the criteria used in parallelizing the verification 
task. Figure 3.9 shows the model of the asynchronous stage activity: each frame t is 
characterized by a number of "push" diphones Npush(t) , by a number of diphones active 
already active Nactb(t) and by a total number of diphones Nver(t) which are verified 
by the dynamic programming. Some of these, with the probality Pdis, becomes inactive, 
and their number is N dis( t) , the remaining instead remain active at the end of the frame, 
and their number is N acte(t) . Some of these, with probability Pop, originates the final 
pop diphones, with probability Ppop . Hence in the same frame we have: 

Npush(t) n Nactb(t) = Nver(t) 

Nver(t) x Pdis = Ndis(t) 

Nver(t) x (1- Pdis) = Nacte(t) 

Nacte(t) x Ppop = Npop(t) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

whilst the frame t activity is related to the frame t+ 1 activity by these relationships: 

Nacte(t) = Nactb(t + 1) 

Npop(t) x bm = Npush(t + 1) 

(3.5) 

(3.6) 

bm being an average factor which summarizes the activity of the diphone scanner in 
generating pushes from pops. The heavier computation of the asynchronous stage is 
the dynamic programming, which is iterated Nver(t) times each frame: hence in a first 
approximation we can say that Nver(t) measures the frame variable computational load 
of the asynchronous stage. At frame t = 1 we have that Nactb(l) = Nacte(O) = 0 , hence 
Nver(l) = Npush(l) , which are the initially pushed diphones: hence the first frame 
computational load is quite reduced. Then Nver(t) grows frame by frame because new 
pushed diphones Npush(t) are great her than Ndis(t), i.e. disabled diphones. At the end of 
the utterance instead Nver(t) decreases again, since in this phase there are many disabled 
diphones Ndis(t) . Figure 3.10 summarizes the typical frame-by-frame verification time 
of an utterance: its behaviour is similar to other search problems, i.e. the computational 
load increases first and then decreases. In the case that the verifier is too slow for a specific 
task, it can be parallelized to N different DSP2 in such a way that the computational load 
is balanced between these processors: this could be achieved if each of the N parallel 
verifiers performs dynamic programming on Nver(t)/ N diphones. An exact balance 
would require, however, the unacceptable overhead of redistributing the active nodes on 
a frame basis between the different processors: we found that an acceptable policy is 
to balance the number of pushes provided by the scanner by distributing Npush(t)/ N 
pushes to each verifier; hence in our implementation with two DSP2 in parallel new pushes 
are alternatively sent to DSP2-A and DSP2-B. Figure 3.11 details the cooperation of the 
scanner with two verifiers in parallel. Other than this we have to point out that the 
scanner and the verifier run completely in parallel; this is due to the fact that the push 
list entering the verifier is organized as a double buffer, hence while the scanner computes 
pushes for frame t + 1 as soon as pops of frame t are available, the verifier reads last 
pushes of the frame t and computes last pops. 



www.manaraa.com

3.2 System Overview 

r---------------------------------, 
I I 
I SCANNER I 
I I 
I bm I 
I 
I 
I 
I 
I 
I t-------
I 
I 
I Ppop 
I 
I 
I 

Npop (I) 

Nlet. (t) 

Npulh (t) 

(I-Pdll) 

I 
I 
I 
I 

---------- -: 

Ndll (t) 

I 
Y£AlF1I!R I 

I'dll 

L __________________________________ _ 

Figure 3.9: Model of subwords activation 

FRAME VERIFICATION 
TIME 

AVG 

N PUSH (1) 

10 20 30 
FRAME 

Figure 3.10: Typical verification times of an utterance 

93 



www.manaraa.com

94 

POPS 

3 The Real Time Implementation of the Recognition Stage 

MASTER 
WORKING f­

AREA 

DIPHONE 
TREE 

DESCRIPTION 

DIPHONE TREE 
SCANNER 

_ CODE:.~gTORS 1-_~L-r....,.(M_A..,S_TE..,R,...) ...... .t __ ---I'" ~;:;g~ 

t t 

PUSHES 
aUFFERO 

DSP2-A 

PUSHES 
aUFFER 1 

DlPHONE 
DESCRIPTION 
AREA (DHMN) 

BROADCAST 
AREA 

PUSHES 
BUFFER 0 

PUSHES 
BUFFER 1 

I 
DSP2- B 

DIPHONE 
DESCRIPTION 
AREA (DHMN) 

I--

POPS 

Figure 3.11: System interplay of the final system with two verifiers in parallel 



www.manaraa.com

3.3 Hardware Details 95 

3.3 Hardware Details 

3.3.1 DSP Board Description 

DSP board architecture requirements 

The DSP board is centered around a TMS32020 digital signal processor, driven by a 20 
MHz quartz clock: this was in fact the most advanced DSP available at the beginning of 
the project and moreover the DSP with the widest address range available: in fact our 
application was memory intensive, especially for the algorithm of Viterbi decoding using 
DHMM. Nevertheless the native addressing capability of the DSP was not enough for us, 
since we wanted to completely address two 24-bit buses (VME and VMX): hence the first 
problem that we faced was the extension of the DSP native address space through data 
area paging. The second problem that we had to solve was to render the board easy to 
reprogram, and this was achieved in the most easy and flexible way by providing the board 
with a bootstrap ROM. Finally we provided the board with biport memories in order to 
allow busy waiting synchronization through flags without producing bus overhead, as 
already explained. 

DSP board architecture details 

As anticipated, the DSP used is a TMS32020 [10]; it is characterized by an address range 
quite large for the category of signal processors, i.e. 64K of program and 64K of data, 
of which 544 words are internal to the chip and therefore faster; these are structured 
in three banks, B2 (of 32 words), BO (of 256 words) and B1 (of 256 words too): these 
areas must be used for more frequently accessed data in order to obtain the maximum 
algorithm speed-up: we will detail this point later for specific algorithms. The TMS32020 
interfaces to a 16-bit data bus and a 16-bit address bus, which are organized into three 
different spaces, i.e. a program space, a data space and an I/O space; the data space 
can be further split into private and general. In fact, according to the configuration 
of the GREG [10] register internal to the DSP chip, data addresses below a threshold 
address are private and above are general (in our case the threshold is 32K): when the 
data general area is addressed a synchronization dialogue is also activated, in such a way 
that this area can be shared with other processors too. Our DSP board is equipped with 
4 banks of 8K words of memory, each of which can be configured as program memory 
or internal data memory: the start address of each bank, its nature (whether RAM or 
ROM, whether program or data) is jumper selectable or PLA programmable. To be 
more precise, the DSP1 is configured for 16K RAM words of programs and 16K RAM 
words of internal data, whilst the DSP2 is configured for 8K RAM words of programs 
and 24K RAM words of internal data: these differences reflect different requirements of 
the implemented algorithms. In order to be reprogrammable, the DSP board is equipped 
with a kernel PROM, with selitesting and bootstrap functions, summarized in Sect. 3.1.3: 
this 512-word PROM starts from address 0 of the TMS32020 and is in overlay with the 
first bank of program RAM; it is automatically addressed for reading after a power-on or 
a system reset signal and deselected by issuing a suitable DSP output: from this point 
on only the corresponding address of the overlay program memory bank will be accessed 
and the corresponding DSP application program executed. Using the 32K words of the 



www.manaraa.com

96 3 The Real Time Implementation of the Recognition Stage 

general data area, we can access to the following memories: 

• the VMX 2-ports RAM, of 8K words, allocated on the same DSP board, 

• a DSP external address allocated on the whole VMX bus, 

• the VME 2-ports RAM, of 8Kwords, allocated on the same DSP board, 

• a DSP external address allocated on the whole VME bus. 

These 4 cases are distinguished by specifying the 2 most significant bits in the EXFR 
register (Fig. 3.14), allocated in the TMS32020 I/O space; other 14 bits are used to specify 
the kind of VME or VMX transfer and the number of the 32K words page accessed on the 
VME or VMX bus: in our system in fact we use 24 bits for addressing the VME and VMX 
buses, hence we have to expand the native addressing capability of the TMS32020. Hence, 
to summarize, the data RAM of a DSP board is organized in a three-level hierarchy: 

• the RAM internal to the chip: this is the fastest, but of 544 words only, 

• the RAM internal to the board, but external to the chip: this is of intermediate 
speed and size, 

• the RAM external to the board, addressable through the VME bus: this is the 
slowest, but the widest in the address range. 

Other than this, the DSP board contains also two specialized VLSI circuits to generate 
and handle interrupts on the VME bus: the registers used for programming the functions 
of these VLSI are also mapped into the DSP I/O space. In this way the DSP board can 
generate and receive the seven different interrupt lines specified by the VME protocol; 
however, only 3 out of the 7 received interrupts can be forwarded to a single DSP, given 
that the TMS32020 accepts a maximum of 3 external interrupts: a set of jumpers defines 
for a specific DSP board which of the 7 input interrupts are really handled. We point 
out that we did not use interrupts in our application for simplifying the implementation. 
Figure 3.12 shows the DSP board general block diagram, while Fig. 3.13 summarizes the 
DSP board address map in hexadecimal notation, as always in this description. 

DSP kernel 

Each DSP is equipped with an identical PROMmed program kernel, with self test and 
program bootstrap functions: it is mandatory to install this PROM in order that the 
DSP board work properly. Commands, results and synchronization words are exchanged 
between the master and the DSP through some predefined locations of the VME biport 
RAM of the corresponding DSP, allocated in the first 8 addresses of this area: of these, the 
first 6 words specify parameters, while the last 2 synchronize the master and the DSP. At 
system reset the kernel program automatically starts for each DSP board of the system, 
since this command sets the DSP's program counter to zero and automatically selects 
the self test and bootstrap PROM in the first program bank. The subsequent program 
evolution is summarized here in pseudo-Pascal code. 



www.manaraa.com

3.3 Hardware Details 97 

DSP TMS32020 

INTERNAL BUS 
< ) 

J t t t 
BOOTSTRAP ROM PROGRAM MEMORY DATA MEMORY 

(512 WORDS) (AS AN EXAMPLE. EXFR REGISTER (AS AN EXAMPLE. 
16 KWORDS RAM) 16 KWORDS RAM) 

1.6\71 < ) 1\7.61 
t : J 

VME INTERRUPT VME BIPORT RAM VMX BIPORT RAM INPUT/OUTPUT (8 KWORDS) (8 KWORDS) 
HANOLING 

t t .. t 
< ) < 

TO/FROM EXTERNAL VME BUS TO/FROM EXTERNAL VMX BUS 

Figure 3.12: nsp board general block dia.gram. 



www.manaraa.com

98 3 The Real Time Implementation of the Recognition Stage 

PROGRAM SPACE DATA SPACE ADDRESSES 

-+-- 0000 
CHI P RAM AREA 

BOOTSTRAP ROM OR (Addresses 0-5 system defined 

ON BOARD RAM (BANK 1) addresses 60 - 7F user defined) 
OR NOT USED 

-+-- 0200 
CHI P RAM AREA 

ON BOARD RAM <BANK 1) -+-- 0400 

NOT USED 
-+-- 2000 

ON BOARD RAM (BANK 2) ON BOARD RAM (BANK 2) 

(ONL Y FOR DSP 1) (ONLY FOR DSP 2) 
-+-- 4000 

ON BOARD RAM (BANK 3) 
-+-- 6000 

ON BOARD RAM <BANK 4) 

-+-- 8000 

BI PORT MEMORY DSPDPE or 

BI PORT MEMORY DSPDPX or 

VME ADDRESS SPACE or 
VME ADDRESS SPACE 

according to the EXFR 
-+-- FFFF 

1/0 SPACE 

8 status/command registers of the ~O 

interrupt contra 11 er -+-- 7 

EXFR register ~ 8 

2 status/command registers of the ~ 9 
interrupt generator ~ A 

not used ~ B 

~ E 

disables PROM kernel when accessed ~ F 

Figure 3.13: Address map of a DSP (hexadecimal addresses) 



www.manaraa.com

3.3 Hardware Details 

VXM biport area 

15 

99 

o 
I 0 I 0 I x I x xlxlxlxlxlxlxlxlxlxlxlxl 

VXM bus 

15 0 

I 0 I 1 IAX11AXOI x I x I x I x IA231A221A211A20lA191A1SlA171A161 

VME biport area 

15 

VME bus 

o 
x I x I x I 

15 0 

I 1 1 1 IAMSIAM41AM31AM21AM11AMOIA231A221A211A20lA191A1SIA171A161 

Figure 3.14: Configurations of the EXFR register 



www.manaraa.com

100 3 The Real Time Implementation of the Recognition Stage 

nsp board initializations; 
first master/dsp synchronization; 
if tests are required then 

repeat 
master/dsp synchronization 
to validate test parameters; 

case test of 
data test: perform data buffer area test 

and obtain diagnostics; 
program test: perform program data buffer area test 

and obtain diagnostics; 
program to data: transfer a buffer from a 

program to a data memory; 
data to program: transfer a buffer from a 

data to a program memory; 
if the test is not ok then stop; 

until no new test is required; 
endit; 
master/dsp synchronization to validate program bootstrap parameters; 
if program boostrap is required do itj 
switch the first program memory bank from PROM to RAM and 
jump to the program address 200. 

From this description, we see that the kernel loops in the first synchronization phase 
until an appropriate data interchange occurs with the master; it is hence possible to skip 
completely the test phase or to enter a test loop. Four test functions are available: a test 
on a data buffer area, a test on a program buffer area, a buffer transfer from a program to 
a data area or vice versa: these two last functions are not really test programs, but can be 
useful in a system test environment. Before each test the master writes in the VME biport 
area of the DSP the buffer starting address and the buffer length: it is hence possible to 
test every VME or VMX addressable area, since in the starting address we define also the 
EXFR register configuration. In case of fault, the program is stopped automatically and 
the DSP writes diagnostic information in the VME biport area arranged in two words, of 
which the first codes the first memory address in fault and the second codes the bit( s) in 
fault. The following program bootstrap phase transfers a buffer area from a global data 
area addressable through the VME bus to the DSP program space; in a previous phase the 
object programs have been transferred from the mass memory to the VME addressable 
data space. At the end the kernel program jumps to the fixed program location 200, 
after having switched the first program bank from this PROM to the RAM by issuing 
an output at address F; in order to be compatible with the kernel the DSP application 
programs must start from location 200, with addresses from 200 to 220 filled with a jump 
table. Since the PROM content cannot be accessed any more, if we want use again the 
self test and bootstrap functions after the PROM deselection, we must have a kernel copy 
in the corresponding program RAM area, which is accessed in the case of a DSP local 
reset command. 



www.manaraa.com

3.3 Hard ware Details 101 

3.3.2 Acquisition Board Description 

Acquisition board requirements 

In the implementation of the acquisition board we faced with two problems: the former 
is the simplification of the samples transfer to the following DSP board, the second one is 
the simplification of running experiments from prerecorded sample files. The easier way 
to transfer samples from the converter to the DSP board is to use a private bus (the VMX 
one) and to equip the converter board with a FIFO of adequate size. In this architecture 
the synchronization between the converter and the DSP board is obtained implicitly by 
using the VMX protocol characteristics, if the processing time of a frame in the DSP 
is faster than a time frame. For running experiments from prerecorded sample files the 
acquisition system has been equipped with a large samples memory (1 Mword) whose 
samples can feed the DSP board as an alternative to being supplied by the converter: 
this samples memory is mounted on a piggy-back board; hence the complete acquisition 
system consists really of two boards. 

Acquisition boards architecture details 

The acquisition section block diagram is shown in Fig. 3.15; it has been implemented in 
two boards, although only one board is enough for a minimal functionality excluding the 
use of samples memory. The data conversion path begins with the microphone, followed 
by an amplifier whose gain can be programmed through a command issued by the VME 
bus; the amplifier output is sent out to a 6 kHz low pass filter, which limits the input 
signal bandwidth; the following stage then digitizes the analog signal with a 12 bits 
accuracy and a 12 kHz sampling rate, which is enough for our application; however higher 
sampling rates (24 kHz and 48 kHz) can be chosen by a suitable jumper setting. Several 
functional modes can be set by suitable commands on the VME bus: they are read by a 
monitor program resident on this board, which is under control of a local CPU. Among 
these, the most frequently used is the normal acquisition: samples are sent to a pair 
of parallel FIFOs, of 1K words each, which can be independently read at two different 
addresses of the VMX bus: this gives the possibility of decomposing parameters extraction 
algorithms in two boards running in parallel, achieving real time also for more demanding 
computations than presently implemented 3. A FIFO overrun can be notified through 
interrupts and flags, and this happens if DSP1 frame computational time is slower than 
10 ms: a DSP1 program implementation of this kind is incorrect from the point of view of 
real time. A correct DSP1 program in fact performs frame computations faster than the 
10 ms frame time, reading the FIFO at a faster speed than AID writes it; hence for some 
read instructions it happens that no new sample is immediately available: in this case the 
VMX bus access is frozen while the read instruction of the DSP idles until a new sample 
is available: this is the "trick" used by the DSPI application program for synchronizing 
with the acquisition system. As mentioned before, the converter board provides also other 
functional modes; generally these modes use the piggy-back samples memory, which has 
a maximum size of 1 Mword and can store up to 80 seconds of speech with a sampling 

3In this implementation only one DSP board for feature extraction was enough, but the possibility of 
using two DSP boards in parallel can be taken into account for future system expansions, as for example 
larger codebook or multicodebook implementations. 



www.manaraa.com

102 

SPEECH 

< 

3 The Real Time Implementation of the Recognition Stage 

TO VMX BUS 

t 
PROGRAMMABLE INPUT FILTER FIFO 1 (1 KWORD) 

GAIN --.. AND A/O AND 
AMPLIFIER CONVERTER FIFO 2 (1KWORD) 

+ INTERNAL BUS + + 
r--------~£----, 
I PIGGY TEST : CONTROL I BACK MEMORY I SECTION 
I SECTION (1 MWORD) : 
I 
~---------}----~ 

<-..-: -------y) 
TO/FROM VME BUS 

Figure 3.15: Converter block diagram 

Byte addresses Controlled function Function type 
2 VMEbus ~ samples memory save-restore 
4 samples memory ~ VMEbus sa ve-restore 
10 gain control standard 
12 status word standard 
18 AID ~ samples memory delayed test 
lA samples memory ~ FIFO (many) delayed test 
Ie samples memory ~ FIFO (once) delayed test 
IE FIFO control standard 

Table 3.5: Locations of the acquisition board window 

frequency of 12 kHz. As a first example, for testing a DSP real time-algorithm for a 
predefined digital sequence, we can do the following steps: load the test data memory 
from the host computer via the VME bus, switch the internal bus from the converter to 
the test data memory and read the test data memory contents through the VMX bus for 
a definite number of iterations or even continuously. As a second example, when we want 
to test off-line a high-level implementation of the algorithms with the data generated by 
the real hardware, the digitized data can be stored in real time in the test data memory, 



www.manaraa.com

3.3 Hardware Details 103 

whose contents can be subsequent transferred to the host computer via the VME-bus. It 
has also to be mentioned that this memory was also added for the case that recognition 
algorithms could require the further refinement of parameters extraction for some sections 
of speech input: however, this possibility has not been used by the algorithms actually 
implemented in this project. 

Acquisition functions 

The acquisition system functions can be distinguished into three sets: 

• minimal standard functions, 

• delayed test, 

• save-restore. 

These functions are selected by properly addressing the 32-byte window allocated for the 
acquisition board in the VME bus: each address controls a different function, as summa­
rized in Table 3.5; some of these functions require only one word, while others require a 
sequence of words to define completely the operation to perform. Minimal standard func­
tions allow to set first the analog input gain, then to set the board configuration through 
the FIFO control command word: on the basis of this command word it is possible to 
enable the samples acquisition on the two output FIFO and, independently, to enable 
or not the interrupt corresponding to the two FIFO full conditions; if interrupt is not 
enabled, this condition can be tested by reading the status word. All standard functions 
require only one word to be defined. In every case, after writing the FIFO control word, 
the samples acquisition in the FIFO starts automatically. Delayed test allows to fill the 
samples memory in a controlled way, using the address 18 of the window, then to present 
these samples to the FIFO several times or only once, using respectively addresses lA or 
Ie of the window. These functions require a time-ordered protocol of parameters written 
through the VME bus on the same address, since we have to specify the first and last 
address of the samples buffer and in one case also the number of repetitions. With these 
delayed test functions it is possible to verify an algorithm repeatedly with the same sam­
ples input: in the case that we want save these samples for a new session we have to use 
the save-restore functions. These functions allow to save a predefined samples area in the 
VME bus area or to restore this samples area from the VME bus area; in this case two 
steps are to be followed: first a time-ordered protocol of parameters written through the 
VME bus allows the definition of the samples area, then VME buffer reading or writing 
allows the transfer of these samples from/to every VME buffer area, under master control. 

3.3.3 System Configuration 

The VME bus used is a well established bus, first adopted by Motorola and then stan­
dardized as IEEE P-I014 [14]: it allows a maximum transfer rate of 40 Mbytes/s on a 
20 slots cabinet and can be configured for transfers of 32 bits of data maximum on a 32 
bits address space maximum, although in our configuration we used 16 bits of data on 



www.manaraa.com

104 3 The Real Time Implementation of the Recognition Stage 

24 bits of address space only. Although a debate exists whether an asynchronous or a 
synchronous bus is better [16, 17], we think that an asynchronous bus like the VME is 
appropriate when interfacing with processors of different families, as in this case. Being a 
high-performance bus [15], the VME bus is provided with an arbiter, which controls the 
dynamic change of the bus mastership: take care to distinguish the bus master, which 
is a hardware dynamic concept, from the system master, which is the CPU driving the 
operating system, hence in our case a software static concept. In our system the arbiter 
is resident on the Motorola CPU; this is configured as a single level arbiter in order to 
simplify the implementation. Both the master and the DSP boards can become VME 
bus masters by suitably issuing bus requests: however the Motorola CPU board is con­
figured for a Release on Request (ROR) behavior, that is, it takes control of the bus by 
default unless some other board wants it; the DSPs instead are configured for a Release 
When Done (RWD) behaviour, that is, they take control of the VME bus only when they 
really want access it: this is due to the fact that the master is the most likely board 
to access the bus. The system could evolve to a distributed interrupt one, since each 
DSP board, the converter board and the master CPU can send interrupts, and both the 
master CPU and the DSP boards can process incoming interrupts. However, in order 
to simplify the firmware implementation, all synchronizations are handled through flags, 
without using any interrupt at all. In each board there is some internal memory and 
some externally addressable memory; these last together constitute a distributed global 
area, addressed through the VME bus, whose map in hexadecimal bytes notation is shown 
in Fig. 3.16; the global area is also internally addressable from some board, hence it is 
biported. This architecture allows both efficiency, by quickly accessing internal memories 
for programs and data not shared between different boards, and ease of interaction be­
tween different boards, by using distributed global area for storing data to transmit or 
to share between different boards. For local data exchanges two secondary VMX buses 
[18) are used: the VMX bus allows a maximum of 2 masters, one primary (that is, ROR) 
and the other secondary (that is, RWD) and this is the configuration used by the VMX 
connecting the DSP2-A (primary master) and the DSP2-B (secondary master) with the 
VME/VMX biport memory; the VMX connecting the DSP1 with the acquisition board 
has only one master, the DSP!. In the implemented application the DSP DPX biport 
memories, although allocated in the map, are never addressed from the bus; the converter 
FIFO location addressed is of course only the topmost location, which can be read at all 
addresses reserved on the VMX map for the FIFO. After the reading of this data, the 
next sample becomes the new topmost FIFO location. 



www.manaraa.com

3.4 Firmware Blocks Details 105 

FUNCTION ADDRESSES 

~ 000000 
RAM on board of the master CPU 

(I Mbytes) 
~ 100000 

SPARE AREA 

~ 400000 

BI PORT DSP MEMORY OPE (oSP I) 
~ 404000 

SPARE AREA 
~ 500000 

BIPORT DSP MEMORY OPE (OSP2/A) 

~ 504000 
SPARE AREA 

~ 580000 

BI PORT DSP MEMORY OPE <DSP2/B) 

~ 584000 
SPARE AREA 

~ 600000 

VME/VMX BIPORT MEMORY DSSEPDX 
(I Mbytes) 

~ 700000 

ACQUISITION BOARD REGISTERS 

~ 7000200 
SPARE AREA 

~ FF8000 
SYSTEM RESERVED AREAS 
(mass memory controller, 

Input/output system) 

~ FFFFFF 

Figure 3.16: VME Addess map (hexadecimal bytes) 

3.4 Firmware Blocks Details 

3.4.1 Feature Extraction 

Generalities 

The feature extraction firmware is executed by the DSP 1 and performs in each 10 msec 
time frame all computations from samples acquisition to spectrum vector quantization 
and rough classification into 6 broad phonetic classes. We were faced with the problem of 
implementing the firmware both accurately and quickly: this has been obtained even at the 
expense of some increase of memory, which is not a sca!-"ce resource in our implementation. 



www.manaraa.com

106 3 The Real Time Implementation of the Recognition Stage 

We added flexibility by using a suitable control area, which is configured according to the 
algorithm alternatives. Here the DSP1 application program is summarized in pseudo­
code. 

DSP1 board initializations; 
DSP1 fixed tables initializations; 
if the master wants to perform the data bootstrap for 

application dependent tables, do it; 
frame counter=O; 

repeat 
repeat 

acquisition of the first samples frame; 
until the master wants to start; 
scale the samples frame; 
window the samples frame; 
evaluate FFT on the samples frame; 
group FFT into articulatory bands; 
evaluate bands logarithm; 
evaluate cepstral coefficients; 
evaluate the logarithm of the frame energy; 
if the master enables phonetic classification, do it; 
if the master enables frame vector quantization, do it; 
increment the frame counter; 
acquisition of new samples of the frame; 

until the master blocks unconditionally this evolution or a 
maximum number of frames has been reached and a conditional 
stop was previously set by the master. 

At the beginning the DSP1 application program initializes both the constant tables, for 
example the trigonometric constants used for FFT, and the application dependent tables, 
for example the codebook used for the spectral vector quantization and the coefficients 
used for the phonetic classification: by changing these tables it is possible to adapt the 
system to different speakers and michrophones. At system start-up these tables are all 
transferred to the DSP internal data area; constant tables are transferred from the DSP 
program area, where they have been previously compiled, while application-dependent 
tables are transferred from the global data area, where they have been previously loaded 
from the mass memory. Frame computations are performed i'n pipeline, so that the output 
of a computation is the input of the following one; these data are generally exchanged 
through a common pipeline area allocated in the TMS32020 internal fast block BO: this 
way the maximum efficiency is aehieved since no data transfers are required from one 
routine to another; besides, the pipeline area is located in the fastest RAM area of the 
DSP memory hierarchy (Fig. 3.17). Scalar results (such as spectral code vector and 
energy code) or results used by different computations and not contiguous in the pipeline 
(such as frame energy) are stored as global symbols in the short fast block B2; fast block 
B1 is used instead for constants and intermediate results in some computations (FFT, 
frame classification). The DSP1 control table allocated in the VME biport area of the 



www.manaraa.com

3.4 Firmware Blocks Details 

SAMPLES 
FOR VMX 

VME 

INPUT CONfROL 
PARAMETERS 

- .... ~ . Deslg'lates algorltt'm sequences 

~ . DesIgnates data transrers 

VME 

OUTPUT CONfROL 
PARAMETERS 

•••••• ~ . DesIgnates parameters controllery program actIvatIons 

VME 

Figure 3.17: DSP1 application firmware architecture 

107 



www.manaraa.com

108 3 The Real Time Implementation of the Recognition Stage 

INPUTS 

, , , , , 
I I I I I 

I 

I I I I I 
I z I z 

I 
z 

I z 
I 

z 
0 0 0 0 Q , 
~ 

. 
~ • ~ • ~- l-

\. \. « \.~ 
, 

« 
~ 5- 5<'1 51"'> 1-, 5 z t--\ "- zrZ , ~ 

0.. 0.. 0.. 0.. , 
ti I ti \ ti \ § • ti 
u u I u I I u I 

I I I I I 
I I I I I 
I I I I I 
I I I I I , , , , , 

OUTPUTS 

Figure 3.18: Pipelined algorithm with generalized inputs and outputs 

DSP controls the algorithm evolution, the results display and the parameters input in 
it: in fact, by suitably setting this area, it is possible to enable or disable sections of the 
algorithm and to enable or disable the transfer of intermediate results from the common 
results area to predefined external VME areas arranged as circular buffers and vice versa. 
The program normally reads samples from the VMX bus, but, by suitably configuring the 
DSPI control table, it is also possible to select the input from the VME bus for executing 
off-line experiments from files 4. The only difference between the general input and the 
general output is that several kinds of output can be enabled at the same time, getting 
valid results on different sections of the pipeline, while only the last enabled input of the 
pipeline is valid, as visualized in Fig. 3.18. 

DSPI control details 

The VME biport area of the DSP contains the DSPI control block, which can be fur­
ther distinguished into the general control block and the input/output control block. 
The general control block controls the algorithm evolution, mainly using the COM­
MAND/STATUS WORD: by properly writing it, it is possible to start and stop the 

4This generalisation has been implemented after the end of the Esprit P26 project. In the DSP! pro­
gram released for the P26 project it was possible to input only DCTs and energies for vector quantization 
and coarse phonetic classification of the frame. 



www.manaraa.com

3.4 Firmware Blocks Details 109 

Channel number Logical channel Comments 
0 input samples display (256 words of BO) 
1 normalized input samples (256 words of BO) 
2 normalized and windowed samples (256 words of BO) 
3 FFT results display (256 w. BO, 2 w. B1) 
4 band grouping results display (36 words of BO) 
5 band grouping logarithms (36 words of BO) 
6 frame energy and DCT's (2 w. B2, 34 w. BO) 
7 spectral and energetic symbols (2 words of B2) 
8 frame energy (2 words of B2) 
9 classifieI: results display (2 w. B2,4 w. BO) 
10 partial time duration (8 words) 

Table 3.6: Summary of DSP1 output channels 

DSP1 computations. Stops can be unconditional or programmed: this last case happens 
when the present FRAME COUNTER reaches the predefined MAXIMUM NUMBER OF 
FRAMES. It is also possible to configure the COMMAND/STATUS WORD in such a way 
as to completely discard a subsection of the algorithm, for example phonetic classification. 
When a stop condition is met, the DSP writes suitable bits of the COMMAND/STATUS 
WORD, and hence the master can be synchronized with this stop by reading it. The 
output control block is partitioned into several channel areas, each of which controls the 
output of a specific channel. In this way it is possible to disable or enable the automatic 
enqueuing of intermediate internal results into VME circular buffers, whose allocation 
has been previously defined. In order to obtain this flexible output behaviour, we imple­
mented a general purpose output routine, called by the DSP1 main program at points 
where frame results are available. This routine needs three parameters: 

• the start address of the internal data to transfer to the output channel, 

• the number of data to transfer, 

• the physical number of the output channel. 

Table 3.6 summarizes the correspondence between physical and logical channels. The 
channel number is associated with specific control and status words in the corresponding 
area of the output control block: the master enables or disables specific output channels by 
suitably writing the corresponding channel control word. Other than this for each channel 
the START VME ADDRESS and the END VME ADDRESS define the allocation,of the 
output circular buffer, whilst the VME POINTER defines the address of the last written 
word; of course the master initially sets VME POINTER=START VME ADDRESS, then 
this pointer is automatically updated by the DSP1 each time the specific channel output 
transmits a new block of results. Other words in the output control block defines a limit 
address: when the VME POINTER overcomes it, a message is sent to the master through 
interrupts or flags: to be more precise there are two limit addresses, hence two overflow 
indicators: the green alarm (i.e. warning message) and the red alarm (i.e. unrecoverable 



www.manaraa.com

110 3 The Real Time Implementation of the Recognition Stage 

error). Other words in the channel control block enable or disable interrupts or flags for 
the green and red alarms independently and specify respectively the interrupt number 
or the VME address of the flag. If the alarm condition is met and this condition is 
transmitted through a flag, the output program sets the VME address specified in the 
corresponding output control section: it is appropriate that the flag is allocated in the 
VME biport area of the receiving board for reducing the bus traffic. The output routine 
is summarized here in pseudo-code; the input routine is similar. 

if the output channel is not enabled 
then exit; 
else (output channel enabled) 

if the new results buffer lenght plus the old buffer 
occupancy overflows the read alar.m occupancy threshold 

then 
if the exception has to be 
notified through flags 

then 

exit 

sets the red alarm flag at the VME address 
specified by the RED ALARM INFORMATION; 

else (exception notification through interrupts) 
programs the DSP board interrupt registers 
with data specified by the 
RED ALARM INFORMATION; 

else (no overflow of read alar.m occupancy threshold) 
enqueues the new buffer to old results; 
updates the buffer occupancy; 
updates the buffer pointer; 
if the new buffer occupancy does not overflows 
the green alarm threshold 

then exit; 
else (green alar.m threshold overflow) 

if the exception has to be notified through flags 
then 

set the green alar.m flag at the 
VME address specified by the 
GREEN ALARM INFORMATION; 

else (notification through interrupts) 
programs the DSP board interrupt 
registers with data specified by 
the GREEN ALARM INFORMATION; 

exit. 

The clear separation of input and output routines has also been useful in the program de­
velopment with the simulator, since the simulator implements input and output from/to 
files differently than the hardware (i.e. through I/O instructions instead of through mem­
ory instructions): hence we confined in the input/output routine the differences between 



www.manaraa.com

3.4 Firmware Blocks Details 111 

the real time version and the program version to be used with the simulator. 

nsP! algorithm details 

The DSP1 algorithms have been implemented in such a way as to optimize both the 
computational speed and the accuracy. Computational speed has been achieved also at 
the expense of memory occupancy, given that the memory is not a scarce resource in our 
DSP board: in fact some routines have been straight line coded, other instead have been 
implemented through table look-up. As a result the programs are allocated in the first 
16K words of the address space and the data are allocated in the second 16K words: hence 
the DSPI board must be configured with the first 2 RAM banks of program and the last 2 
RAM banks of data. Accuracy has been achieved by properly scaling intermediate results, 
hence performing a sort of block floating point, which is simplified by the availability of the 
efficient NORM instruction of the TMS32020: when comparing the quantization results of 
the floating point simulation with results of this TMS32020 integer implementation for a 
10 000 frames speech data base, we found a difference in 0.5% of frames for spectral and in 
0.03% of frames for energetic symbols [30J. Most of the time spent by DSPI was in FFT 
computation and in spectral vector quantization: hence these were the computations 
to optimize in speed. The FFT computation has been improved both in speed and in 
accuracy by suitable implementation choices: speed has been obtained by considering 
that the 256 real point FFT is related to the 128 complex point FFT, whose real part is 
composed of even samples and imaginary part is composed of odd samples of the first 256 
real point FFT [32J, accuracy has been obtained by structuring the 128 point FFT into a 
first radix-2 decimation in frequency (dif) stage and 3 radix-4 dif stages [30, 33, 34, 35J. 
The vector quantization routine is also time consuming, since for each code vector Yk we 
have to calculate the Euclidean distance of it from the measured input X, that is, 

N 

~ (:z:(i) - y(i))2 (3.7) 
i=l 

hence for N~od code vectors, each of which represented by Npar parameters we have to 
compute NcodxNpar differences: each difference has to be squared and orderly cumulated 
into different Ncod sums: hence, given that square and add can be implemented in the 
same DSP instruction, we have to perform 2 x N cod x N par instructions by frame: if 
N cod = 28 and N par = 24 we have to do 213 = 8 K operations per frame, hence 800K 
operations per second. This computation however can be rearranged as [38J: 

N N N 

~ :z:(i)2 + ~ y(i)2 - 2 x ~ :z:(i) x y(i) (3.8) 
i=l i=l i=l 

and this reduces computations, since the first term is computed once on the frame for 
all the code vectors, the second one is prestored, since it depends only on the symbol, 
and the third halves the number of computations required in comparison to the original 
formulation. The DSPI computational time depends on the system initialization, that 
is, on the number of output channels enabled: this is quite negligible in the normal 
case activated for on-line recognition, when only output channels 7 and 9 are enabled, 
but it becomes important in the case of more extensive diagnostic displays. The DSPI 



www.manaraa.com

112 3 The Real Time Implementation of the Recognition Stage 

Routine Number of Program Constants Coding 
name cycles (words) (words) stvle 

MAIN 300 320 " L 
INPUT 411 30 " L 

NORMA(1) 2885 40 " L 
HAMMI 2360 40 256 L 

FTT's first 1912 120 124 L,O 
stage 

NORMA(2) 2885 see NORMA (1) " L 
FTT's other 2756" 2 1560 " S,I 

stages 
MIXREV 761 766 " S 

128T0256 3310 62 124 L,O 
NORMA(3) 2885 see NORMA (1) " L 
BANG ROUP 1884 1518 " S,I 

LOGARI 1066 44 1024 L,D 
OCT 2562 42 324 L 

VECaUA 9286 94 2176+256 LIS 
VECENE 83 30 I L 

Table 3.7: Summary of time and memory occupancy of DSP1 routines 

computational time depends also from the spectral codebook dimensions and from the 
phonetic classifier complexity, which affects computational times of the corresponding 
routines; ordinarily we use for vector quantization 13 cepstral coefficients for 256 point 
code vectors and 10 coefficients in the frame classification, reaching always the real time: 
for larger codebook sizes, for example 512 points, the DSP1 alone can no longer keep up 
with real time 5. Just to give an idea of the computational requirements, Table 3.7 gives 
the results obtained in the case that the phonetic classification is excluded and that the 
codebook size is of 128 symbols for 17 DCTs each. This table summarizes the number 
of 200 ns machine cycles spent in each computation, the program memory words used, 
the constant memory words used. A last column in the table reports eventual comments: 
L means looped coding style, S means straight-line coding style, I means that we used 
immediate constants, 0 means that a constant table has been allocated on the chip, D 
means data dependent routine: in this last case the number of cycles reported in the table 
represents an average value. From this table we can see also that in this case the program 
and data memory occupancy is not too high and the real time requirement has been meet, 
since the manipulations on a 10 ms time frame require less than 50K cycles (with a cycle 
time of 200 ns). 

SIn this case the feature extraction task must be restructured; it could be carried out by two DSPI in 
parallel, for example. 



www.manaraa.com

3.4 Firmware Blocks Details 113 

3.4.2 Segmentation and Lexical Access 

The segmentation and lexical access firmware is used only in the two-step approach, for 
quickly preselecting a subset of the whole vocabulary, named cohort, to be verified in 
more detail; both are presently implemented in the master Motorola CPU in Pascal lan­
guage [28]. Segmentation and lexical access firmware is only cursory described in this 
section; for a more detailed description see Chap. 2. The segmentation program merges 
consecutive frames with "similar" phonetic labels to single segments; these phonetically 
labelled segments are then used by the lexical access for identifying the most likely subset 
of words. Just to summarize, the segmentation program receives from the DSP1 in a 
suitable VME-addressable area the first and the second phonetic frame hypotheses and 
the corresponding scores, and groups frames into phonetic segments. These are organized 
into a graph structure, in a process called "micro-segmentation": each arch of this graph 
is a "micro-segment", characterized by the initial and the final frame and by the first 
and the second phonetic hypothesis with their corresponding scores. Then the lexical 
access program finds the best match among all paths of the microsegmentation graph 
and all paths in the vocabulary word-tree; the nodes associated with a set of words of 
the vocabulary are called terminal nodes. To match a speech segmentation against the 
phonetic transcription of the vocabulary words a modified Dynamic Programming proce­
dure is used, named 3DP [36]: it relies upon statistical models accounting for deletion, 
substitution and insertion errors of the segmentation step; a beam search strategy is used 
to reduce the number of active paths. The lexical access output is the set of words asso­
ciated with the active terminal nodes when all input micro-segments are processed: this 
output will be used by the verification module as its input lexicon, reduced by an order 
of magnitude compared to the original vocabulary. The segmentation and lexical access 
firmware requires also the definition of some heuristic parameters, for example the num­
ber of frames used by majority voting filters (called windows), the threshold of rejection 
and the threshold of certainty used by the 3DP lexical access; these parameters can be 
adjusted by using the off-line evaluation program. 

3.4.3 Markov Verifier Firmware 

Generalities 

As anticipated in Sect. 3.2.4, the search stage implemented is split into two levels both in 
the algorithm and in the data structures. The high level in fact describes the set of words 
under verification as a tree of diphone-like subword units, the low level instead describes 
these subwords as Discrete Hidden Markov Models (DHMM): Fig. 3.19 summarizes this. 
The high level algorithm (scanner) drives the search into its diphones tree of the word 
that best matches with the input utterance relying on the pattern matching performed 
by the low level algorithm (verifier). With this kind of partition the scanner is devoted 
to the more irregular, but less computation-intensive task, while the verifier is devoted 
to the more computation-intensive, but also regular task: in fact dynamic programming 
inside dip hones representations can also be arranged in a vector form. Given the different 
characteristics of the scanner and of the verifier, we found it appropriate to implement 
the scanner in a general purpose CPU and the verifier in DSP technology, faster and well 
suited to vector computations. We also faced, of course, some earlier DSP limits in the 



www.manaraa.com

114 3 The Real Time Implementation of the Recognition Stage 

Figure 3.19: Example of the two level vocabulary description 

verifier stage implementation, mainly computational accuracy and memory addressabil­
ity. As far as accuracy is concerned, since no floating point was available for our DSP 
technology, we implemented the Viterbi algorithm only 6 by using logarithms of probabil­
ities: this replaces multiplications with additions and, what is more important, makes the 
dynamic range more suitable to the integer arithmetic. As far as memory address ability 
is concerned, the main problem was due to the huge space required by the spectral code 
vector emission matrix B, whose dimensions are given by the product of the number of 
states with the number of code vectors. Just to give an idea of its dimensions, we can 
assume a number of states equal to 29 and a number of codevectors equal to 28 : in this 
case the B matrix requires 217 = 128 K words of data memory, which is twice the maxi­
mum addressable data memory of the DSP we used! Hence it is evident why we used the 
page register EXFR for extending the DSP board addressabilitYi besides, we were forced 
to use an external general purpose RAM board in order to allocate the B matrix at least: 
in fact memory requirements for the DHMM verifier were so different that for parameters 
extraction we did not consider the possibility to add this extension on the same DSP 
board. Special care was taken to optimize the verifier speed: besides extensively using 
in-line coding we adopted suitably reduced DHMM. The three classes of diphones used, 
the silence, the stationary and the transitional ones, are described by DHMMs of 1,3 and 
4 states respectively: their "complete" models will consider all transitions from the state 
i to the states i, i+1 and i+2, as detailed in Fig. 3.20. These complete models have been 
reduced by completely omitting the transitions whose probability are ordinarily very low 
when we use the complete models in the training: the reduced models (see Fig. 3.20a) 

6The forward algorithm was not implemented since it is most suitable to a floating point DSP. 



www.manaraa.com

3.4 Firmware Blocks Details 115 

a) b) 

Figure 3.20: Subword unit DHMM structures used: "reduced" (a) and "complete" (b) 

minimize recognition time but of course if used in the recognition they must be used also 
in the previous training phase by forcing the omitted transitions to O. In the following 
we will detail the specific algorithm choices and data organization and placement in the 
verifier. 

Verification stage details 

The master-slave interplay is organized as anticipated in Fig. 3.7 [45]: frame-by-frame 
spectral and energetic codes computed by the DSPl are broadcast from the master to all 
the slaves through their BROADCAST AREA; the master informs also the specific slave 
of the new nodes it must activate in this frame through the PUSHES MAILBOX AREA. 
At this point the slaves advance by one frame the dynamic programming over all the ac­
tive nodes, taking into account the previous frame probabilities stored in the WORKING 
AREA and the constants in the SUB WORDS DESCRIPTION AREA, where for each 
subword the transition matrix A, the spectral emission matrix B and the energetic emis­
sion matrix C of the corresponding DHMM are stored. As a result the probabilities of the 
states of active nodes contained in the SLA VE WORKING AREA are updated; unlikely 
nodes become inactive. Then each slave notifies to the master through the POPS MAIL­
BOX AREA information the master evaluates again the PUSHES MAILBOX AREA for 
the next frame and the computation can be iterated for the next frame. The memory on 
the DSP2 board uses the first board internal RAM bank for programs and the remaining 
3 for data and uses an external expansion the VME/VMX biport memory. Hence six 
kinds of data RAM are available: 

• 544 words of on-chip data RAM, 

• 24K words of board internal data RAM (named PRIVATE in the following), 

• 8K words of data RAM, biported with the VME bus (named DPE in the following), 



www.manaraa.com

116 3 The Real Time Implementation of the Recognition Stage 

• 8K words of data RAM, biported with the VMX bus (named DPX in the following: 
it can be used as an extension of the PRIVATE memory only), 

• 1M byte of external data RAM, addressable through the VMX bus (named VMEjVMX 
in the following); 

• any other VME addressable system memory resource. 

The PRIVATE memory is the fastest, hence its preferred use is for frequently accessed 
and upda.ted data, the DPE memory is suitable for data addressed both by the master 
and the slave, the VMEjVMX is the slower, but wider RAM area, where large data tables 
can be stored. The access to memories on the VME bus should be limited as much as 
possible to relieve the system bus. In these RAMs we have all9cated the data structures 
detailed in the following: 

• the transition matrix A, the spectral emission matrix B and the energetic emission 
matrix C of the DHMM and the directory TDIR of the DHMM, storing for each 
diphone the number of its states and the entry point into A,B,C structures: these 
tables constitute toghether the SUB WORDS DESCRIPTION AREA; 

• the BROAD area where the master puts the frame spectral and energetic codes, 
the beam-search threshold and the best path distance found at the last frame: this 
value is used to scale down all the distances, that otherwise would monotonically 
Increase; 

• the input mailbox area MAILIN, that contains the number NPUSH of frame pushes 
and the relative NPUSH 4-word records {node identity, cumulated distance and 
backpointer of the started path, plus a spare location}; 

• the output mailbox area MAILOU, that contains the best distance found among all 
its paths, the number NPOP of frame pops and the relative NPOP 4 word records 
(with the same fields of push records); 

• the MAP area, where at the beginning of every frame the node identity is put in 
correspondence with the corresponding input push, for a quick retrieval during the 
algorithm execution; 

• the XCOD area, which associates with the node identity the corresponding diphone; 

• the PAGES area, which is divided into 8-word pages for the storage of the informa­
tions on active nodes only: of these the first 6 contains the backpointers and the 
distances of the corresponding subword state, the last two respectively contain the 
node identity and the pointer to the next active page (Fig. 3.21); 

• the STACK area, which is a stack of pointers to the free pages in the PAGES area: 
the PAGES and the STACK area toghether constitute the SLAVE WORKING 
AREA. 



www.manaraa.com

3.4 Firmware Blocks Details 117 

CONTENT ADDRESSES 

Backpoi nter (state 2) -0 

Score (state 2) -1 

Backpointer (state 1) -2 

Score (state 1) 

Backpointer (state 0) -4 

Score (state 0) -5 

Node -6 

L ink to the next page -7 

Figure 3.21: Format of a page in the PAGES area 

As far as the PAGES area is concerned, we implemented it as a linked list of fixed length 
pages containing the informations on active nodes: the allocation and deallocation of 
pages is simplified both by the pages' linked structure and by the stack of free pages. 
This solution greatly reduces PAGES memory requirements, because we have to size this 
area for the maximum number of active nodes per frame only and not for the total number 
of nodes. Two other PAGES area organizations have been examined and discarded for this 
implementation: the static organization and the cyclic one [7). The static organization 
(PAGES area sized on the total number of nodes) would simplify the algorithm, but would 
require a much larger PAGES area, which could find room only in the slower VMEjVMX 
RAM extension, with a clear slowdown of the overall algorithm; the cyclic organization 
described in [8), in order to be effective in computational speed-up, would require a cyclic 
addressing mode, not available in the chosen DSP. In Table 3.8 we summarize these data 
structures, identifying for each the function and the size, which depends on the following 
parameters: 

• NMOD: total of different subwords, 

• NSTA: states of models in total (including the "dummy" final states), 

• NOOD: symbols of vector quantization, 

• NENE: quantization levels for the energy, 

• NTRA: allowed transitions to a state from previous states, 



www.manaraa.com

118 3 The Real Time Implementation of the Recognition Stage 

Table Function Size (words) Typical size and allocation 

A DESCRIPTION NTRA*NSTA 2372 Private 
B DESCRIPTION NCOD*NSTA 151808 VMElVMX 
C DESCRIPTION NENE*NSTA 1186 Private 

TOIR DESCRIPTION 2*NMOO 256 Private 
BFDAD BR:)A[)Ct\ST 4 4 OPE 
MAlLIN MAILBOX 1+4 * NPUSH 4097 OPE 
MAILOU MAILBOX 2+4 * NPOP 2050 OPE 

MAP WORKING NIDE 4096 Private 
>OD DESCRIPTION NIDE 4096 VMElVMX or private 
STACK WORKING N'PG 1024 Private 
PPGES WORKING 8 * NPAG 8124 Private 

Table 3.8: Data structures used in the slave algorithm 

• NIDE: different identities (i.e. nodes in the high level tree) at most used by the 
master, 

• NPAG: pages available for the PAGES area, 

.• NPUSH and NPOP: maximum number of pushes and pops respectively. 

To give an idea of the memory requirements, the typical memory size for the two-step ap­
plication is also reported (NIDE=4096, NMOD=128, NSTA=593, NTRA=4, NCOD=256, 
NENE=2, NPAG=1024, NPUSH=1024, NPOP=512). The final column reports the al­
location chosen for these tables in the same application: of course we have to allocate 
in the DPE memory the tables to be addressed both by the high and by the low level 
algorithm, otherwise the allocation in the private memory is preferred: this cannot be 
achieved only by the bulky table B, which in any case is a read-only table. The slave 
firmware is controlled by the master through a command register located in the DPE 
biport memory. A bit in this register is used for the synchronization with the master: the 
master sets it to start the slave and the latter resets it to notify the end of its processing. 
Other bits of the command register are used by the master for coding the function to be 
activated on the slave. The available functions are: 

• the DHMM slave bootstrap; 

• the configuration of allocation of slave tables; 

• the software restart of the recognizer for the first frame of a new recognition; 



www.manaraa.com

3.4 Firmware Blocks Details 119 

• the single frame processing, i.e. the expansion of active paths that constitutes the 
main slave activity. 

The bootstrap function copies TDIR, A and C areas of the DHMM from the global (VME) 
to the DSP private space: if the master wants to change the DHMM, it first loads it into a 
shared VME resource and then activates the slave bootstrap. The configuration function 
allows definition of the allocation of most data areas at run time instead of at link time. 
This way the master can choose the best memory allocation for a specific application 
using the same DSP firmware; for instance it can decide whether to allocate XCOD in the 
VME/VMX in the private area. The first case is mandatory for the two-step approach, 
since in this case this area must be updated by the master at run time; the second case is 
preferred for the single step-approach, since in this case it is fixed for the whole time and 
hence it does not have to be directly access able by the master: in this case it is better 
to allocate it as private for maximum efficiency. The restart function clears the list of 
active subwords and all the work pages are made available again by suitably resetting 
the STACK area. The most important and heavy function is of course the single-frame 
dynamic programming, which is issued on a frame basis and whose evolution is detailed 
in the following in a pseudo-Pascal notation: 

{ SINGLE FRAME PROCESSING FUNCTION } 
allocate MAlLIN in order to handle the double buffer of PUSHES; 
read new values in BROAD and NPUSH in MAlLIN; 
for i := 1 to NPUSH do 

set MAP according to PUSH[i] identity; 
point to the active page at the head of the linked list; 
{ LOOP ON ACTIVE SUBWORDS } 
while not end of list do 
begin 

decode the subword in the page entering XCOD with the page 
identity; 
retrieve in TDIR the number of states and DHMM entry point 
for the subword; 
case number of states of 

end; 

1 execute the D.P. routine for silence model; 
3 : execute the D.P. routine for stationary model; 
4 : execute the D.P. routine for transitional model; 
(in all these subcases take also into account pushes 
in already active pages for dynamic programming on the 
first state, suitably marking them in the PUSH list) 

if the subword is still active then 

else 
begin 

end; 

go one step ahead in the linked list 

delete the page from the linked list; 
push the page address onto the stack; 



www.manaraa.com

120 3 The Real Time Implementation of the Recognition Stage 

endj 
{ LOOP ON PUSHES } 
for i := 1 to NPUSH do 
if PUSH[i] is in an inactive subword (i.e. not marked) then 
begin 

end. 

retrieve in TDIR the number of states and DHMM entry point 
for PUSH[i] subwordj 
update path score for current frame labelsj 
if the score is under the beam-search threshold then 
begin 

endj 

pop a page address from the stackj 
initialize the page fieldsj 
insert the page in the linked listj 
if the number of states is 1 then 

evaluate the pop path, increment NPOP and 
write a new POP recordj 

We observe that the initial allocation of MAlLIN allows the maintenance of a double buffer 
of pushes: hence the master and slave algorithm can advance completely in parallel, 
without waiting for each other: in fact as pops are produced by the slaves they are 
processed by the master for generating the pushes for the next frame: in the meanwhile 
the slaves continue their computation by consuming the pushes of the present frame. We 
observe also that the slaves processes first all active nodes and the corresponding pushes, 
then process the remaining pushes which can activate new nodes. The throughput of 
this implementation can be roughly measured by the frame processing time of a single 
subword, who is about 50 us, evaluated as a weighted average of 3 possible cases (silence, 
stationary and transitional models): this means that a single DSP board can process in 
real time about 200 active nodes per centisecond frame in average: in fact the frame labels 
are stored in a FIFO and the DSP reads them asynchronously, averaging also higher peak 
values. This throughput is rather satisfactory, since the vocabulary organized as a tree of 
subwords and the beam search thresholding reduces the frame average of active subwords, 
as detailed in Sect. 3.6. 

3.5 Some Details on Other System Functions 

3.5.1 Program Loading and System Testing 

The LOADER program drives a test and bootstrap environment in our multiDSP sys­
tem. This program is implemented in Pascal language and runs in the master Motorola 
board; it interacts with the system console, with the system mass memory and with the 
"DSP ROMmed kernel". Figure 3.22 summarizes the LOADER program flow, and the 
corresponding console dialogue: first of all the user selects a DSP, then the user decides 
whether to perform or not the DSP self-test, finally a DSP program in loadable format is 
selected from the system mass memory and transferred first to a fixed VME addressable 



www.manaraa.com

3.5 Some Details on Other System Functions 121 

area, tranformed into the corresponding program RAM image, and then transferred to 
the internal program RAM DSP area by properly activating the DSP ROMmed loader; 
this procedure can be iterated for each DSP in the system, obtaining the initial system 
validation and the flexible loading of the intended application programs into the intended 
DSPs. In the self-test phase these memory tests are automatically performed in s~quence: 

• test of the data RAM on the TMS32020 chip, 

• test of the data RAM area installed on the DSP board, 

• test of the DPX memory on the DSP board, 

• test of the DPE memory on the DSP board, 

• test of a section of the data RAM VME addressable through the DSP board, 

• test of the DSP RAM program area. 

Although these tests are not exhaustive, they have enough coverage, since also the DSP 
chip must work properly to drive the memory test algorithm. 

3.5.2 Acquisition Firmware Details 

The acquisition program ACQUIP displays the words to be uttered in the training phase 
and stores on the system mass memory the frame energy and 17 DCTs for every word; 
this program is implemented in PASCAL language and runs on the master of the minimal 
system configuration reported in Fig. 3.23. In this configuration the DSP1 board reads 
through the VMX the samples of every word uttered, then extracts features through 
the ESPTPARA program; these parameters are then stored in mass memory files. To 
initialize the system the operator must first load the DSP1 program through the program 
LOADER; then he must load and run the ACQUIP program, who executes these steps: 

• a) it chooses the vocabulary to utter and then chooses the starting word of the 
acquisition session, 

• b) it initializes the AID and DSP1 boards for acquisition, ENERGY + 17 DCT 
computation and results memorization on a 1Mbit RAM board, 

• c) it displays the word to be presently uttered, 

• d) it allows the operator to define the start and end points of the utterance, through 
a suitable keystroke activation, then automatically discards initial and final low 
energy records, 

• e) it can display frame energies of the uttered word before storing the results on the 
mass memory, 

• f) it stores on the mass memory a file of frame results for each word uttered, assigning 
it a name automatically, 

• g) it repeats steps (b) to (f) until all words of the vocabulary are uttered or the 
operator terminates the acquisition session. 



www.manaraa.com

122 3 The Real Time Implementation of the Recognition Stage 

START 

Test phase of the chosen DSP 
(sequence of 6 or 5 tests. depending 

whether this is the first time or not 
after power on for the DSP) 

Load phase of the chosen DSP (program transfer 
from mass memory to a VME area.then from this to 
DSP program memory: in the case that this is the 
first time after power on for the DSP copies also the 
kernel in the DSP program RAM) 

N 

STOP 

Figure 3.22: Loader program flow 



www.manaraa.com

3.6 System Evaluations 123 

VMX LOCAL BUS 

~ 

MASTER CPU 1 MBIT 
DSP 1 AID MEMORY BOARD 

~ ~ ~ ~ 

VMEBUS ~ H 

F 
MICROPHON E 

MASS MEMORY 

Figure 3.23: Minimal system configuration used for the acquisition 

3.5.3 Parameters Training Environment 

Figure 3.24 summarizes the VAX/VMS training en~ironment. We did not duplicate the 
parameter training functions, already developed in the VAX/VMS environment, but we 
integrated this environment in our VERSADOS system: in fact the VERSADOS system is 
first used for real time speech acquisition until parameter files extraction; then these files 
are transferred in order through an RS232 serial connection to the VAX/VMS host, where 
system parameters are trained; then the computed parameter files can be transferred 
again through the same connection from the VAX/VMS to the VERSADOS system. The 
following parameters are evaluated from the DCT plus energy frame by frame files: 

• the codebook, for the real time vector quantizer, 

• the phonetic classifier parameters, 

• the matching costs, for the real time lexical access module, 

• the hidden Markov models (HMM) for the real time verifier. 

At the end of the training, these parameters are suitably transformed from the format 
used in the VAX/VMS system to the format used in the final VERSADOS system, and 
then transferred to this one. 

3.6 System Evaluations 

3.6.1 General Considerations 

The recognition system has been evaluated using a large test vocabulary of 1008 Italian 
words oriented to a geographical data base access; this test vocabulary is described by a 
tree connecting 5295 subwords. The different subwords selected for the Italian language 



www.manaraa.com

124 

WORD COMPIUR 

3 The Real Time Implementation of the Recognition Stage 

1----... (TO 'OlE RECOGNITION STAGE) 

(TO THE RECOGNmON STAGE) 

:.: '.' 

PHONEnC CLASSIFlCATlON 
PARAllEl . t-----... (TO THE RECOGNmON STAGE) 

..... : 

MATCHING COSTS. (TO THE RECOGNmON STAGE) 

Figure 3.24: Training environment 



www.manaraa.com

3.6 System Evaluations 125 

are 125, of which 101 represent transitional sounds, 22 stationary 3-state sounds and 2 
stationary I-state sounds [5]. For continuous speech testing this vocabulary has been 
arranged into 100 test phrases, with a total of 578 words. The system has been trained 
with a phonetically balanced vocabulary of 1105 words: hence in this vocabulary each 
subword appears at least 12 times and in different contexts in order to have a statistically 
significant training. In the following we will distinguish experiments carried out on the 2 
DSP, 12.5 MHz CPU system; called the basic system, experiments carried on the 2 DSP, 
20 MHz system, called the intermediate system, and experiments carried on the 3 DSP 
20 MHz CPU system, called the final system. 

3.6.2 Single-Step Isolated Words Recognition 

Single-step isolated words recognition has been characterized in the basic system version 
only and for two sub cases (Tab. 3.9): 

• single-speaker training, 

• multi-speaker training. 

Single-speaker training has been verified against the same speaker; multi-speaker training 
has been performed on a set of 6 male speakers and has been verified against a different 
male speaker; the codebook size is of 144 code vectors for the single speaker and of 272 
code vectors for the multiple speakers. For both cases we report results obtained with 
a standard beam search threshold value (20) and with a more tolerant one (25): in the 
former case we found a better system throughput, in the latter instead a little increase of 
the recognition accuracy and a sensible decrease of the throughput. This second case in 
fact recovers some correct words in the hypothesized cohort by augmenting the number 
of possible paths and hence the computational load of the system. Given that the basic 
system configuration can follow in real time a recognition task with 200 average active 
subwords per frame at most, we can say that for the standard beam search threshold the 
basic system can follow in real time both the single speaker and the multispeaker case: 
hence in this case the basic system configuration (2 DSP 32020 + 1 CPU 68020 at 12.5 
MHz) is already satisfactory. 

3.6.3 Two-Step Isolated Words Recognition 

Table 3.10 summarizes accuracy and throughput results obtained for the basic system 
configuration in the two-step recognition algorithm for isolated-word recognition: we con­
sider 6 subcases, combining 2 possible values of the beam search threshold (55 and 67) 
and 3 possible certainty factors (1, 2 and unused) for the three-dimensional dynamlc pro­
gramming (3DP) lexical access module [6]; by contrast the beam search threshold of the 
detailed DHMM verification is 20 for all subcases. For each of these subcases we measured 
8 parameters, 3 of them pertinent to the hypothesization stage and the other 5 pertinent 
to the verification one. The best accuracy of the hypothesization stage is obtained with 
the larger 3DP beam search threshold and without the certainty factor: in this case the 
correct word is included in the 97.5% of cases in the cohort generated by the lexical access 
stage; the average size of this cohort is larger than in the others sub cases, however it is an 



www.manaraa.com

126 3 The Real Time Implementation of the Recognition Stage 

SI"llle • speaker Multi • speaker 

Beam search threshold 
20 25 20 25 

Average cchort size 3.7 5.7 6.7 13.4 

Inclusion rate into the cohort 98.10% 99.00% 94.10% 97.60% 

Inclusion rate up first score 91.80% 92.00% 82.20% 83.40% 

Inclusion rate at second score 4.10% 4.30% 7.30% 8.40% 

Inclusion rate up second score 95.90% 96.30% 89.50% 91.70% 

Inclusion rate at third score 1% 1.30% 1.40% 1.40% 

Inclusion rate up third score 96.90% 97.60% 90.90% 93.10% 

avg. active subwords per frame 139.3 250 182 308.5 

Max. active subwords per frame 755 1255 1800 2412 

Average word recognition time 0.9 s 1.3 s 1.1 s 1.7 s 

Average utterance duration 0.95 0.955 0.85 s 0.85 s 

Table 3.9: Experimental results of the single-step isolated word recognition 

order of magnitude less than the whole vocabulary size. The following verification stage 
then reduces the average final cohort size from 82.6 words to 2.7 with a corresponding 
small decrement of the correct word inclusion rate from 97.5% to 96.3%. The time spent 
in the hypothesization stage is bigger than the time spent in the verification one, while 
the verification stage is rather underutilized: in fact the first stage has been programmed 
in Pascal language in a general purpose microprocessor, whereas the second one has been 
programmed in assembly language in a DSP processor. We could reduce this "hypothe­
sization stage bottleneck" of the present implementation by transporting if not all then 
at least some computations of the hypothesization stage (e.g. frame segmentation) into 
a DSP processor. This has not be pursued since the throughput was already satisfactory 
for the 1 k-word intended application; for larger vocabularies however this improvement 
could best exploit the potential throughput of this algorithm. 

3.6.4 Single-Step Continuous Speech Recognition 

Table 3.11 summarizes results obtained for the single-step continuous speech recognition 
system on 100 test phrases oriented to the vocal access of a geographical data base; 
four evaluations, related to four different speakers, are reported. We performed two 
experiments for each speaker, the first one with the standard beam search threshold (20) 
and the second one with a more relaxed beam search threshold (22.5): in the second one 
we measure some accuracy improvement with a sensible increase of the computational 
load. As far as accuracy is concerned, we have to point ou:t that the measure of total 
missing words is rather conservative because most of these are· short nonfunctional ones; 
their absence does not affect the understanding level accuracy [3]. Since in this case the 



www.manaraa.com

3.6 System Evaluations 127 

Lexical-Acce.a 3DP 
aeam-.earch threahold Lexie. Acce •• 

Certainty factor 
55.0 67.0 

Correct word incl. in the cohort after hypoth 92.60% 9S.20% 

Average cohort size after hypothesization 37.9 58.8 

Average elapsed time due to hypotesizatlon 0.4 s 0.7 s 

Correct word incl. in the linal cohort 91.50% 95.20% 
1.0 

Average cohort size after verification 2.5 2.S 

Average elapsed lime due to verification 0.2 s 0.3 s 

Average nurri:ler of active subwords 22.2 27.5 

Maximum number of active subwords 233 298 

Correct word incl. in the cohort after bypath 93.60% 97.40% 

Average cohort size after hypothesizatlon 48.1 80.8 

Average elapsed time due to hypotllesizatlon 0.6 s 0.9 s 

Correct word incl. in the final cohort 92.30% 96.10% 2.0 

Average cohort size after verification 2.6 2.7 

Average elapsed time due to verification 0.3 s 0.4 s 

Average number of active subwords 25.8 31.6 

Maximum number 01 active subwords 290 319 

Correct word incl. in the cohor1 after hypoth 93.70% 97.50% 

Average cohort size after hypothesizalion 49.1 82.6 

Average elapsed time due to hypotesizalion 0.6 s ,'. 0.9 s 

Correct word incl. in the final cohort 92.4 96.30% 1'OIIl.5E[) 

Average cohort size after verilicatlon 2.6 2.7 

Average elapsed time due to verification 0.3 s 0.4 s 

Average number 01 active subwords 27 34 

Maximum number 01 active subwords 290 319 

Table 3.10: Experimental results of the two steps isolated word recognition (verification 
stage beam search threshold = 20) 



www.manaraa.com

128 3 The Real Time Implementation of the Recognition Stage 

Ph, .... wllh Percentage of Tol.1 mlaolng Percen •• ge 0' Average 
.11 uttered ph •••• wllh word. In ph, .... wHh I.lllco Average active ma.lmum acllv. 
word. In Ih. aU uUlled oil laUlc •• some words hypolh.slz.d aubworda aubworda 

10"le. In .... word. ml •• lng In word. 
laUlcl Ih. latUc. 

beam search thresh. -20 86 86% 14 2.42% 371.5 429 1949 

1~ speaker 

beam search Ihresh. -22.5 90 90% 10 1.73% 698.9 560.6 2238 

beam search thresh. _20 95 95% 6 1.04% 270.9 301.3 1522 

2'" speaker 

beam search thresh -22.5 95 95% 6 1.04% 472.7 397.4 1800 

beam search thresh. .20 83 83% 17 2.94% 489.6 551.3 1879 

34 speaker 

beam search thresh. -22.5 87 87% 13 2.25% 884.2 710.6 2172 

beam search thresh. -20 86 86% 15 2.59% 206.7 410.6 1816 

4" speaker 

beam search thresh _225 93 ·93% 7 1.21% 405.8 539.5 2177 

Table 3.11: Experimental results of continuous speech recognition on 100 phrases with 
1008 words vocabulary pronounced by four different speakers 

average number of active subwords per frame is substantially larger than 200, we cannot 
presume to have a real time system with the basic configuration, hence we improved 
our system first to an intermediate configuration (with a faster CPU), then to a final 
configuration, with two DSPs in parallel for DHMM verification; Table 3.12 compares 
these three configurations from the point of view of the throughput. The final system 
configuration already seems adequat~, since with the standard beam search threshold the 
ratio of the tot.al recognition time to the net utterance time after phrase endpointing is 
1.67; in these conditions the user perceives the system as nearly real time since he adds 
to the net utterance time the starting and ending silences. We can verify however that 
by doubling the number of DSPs performing the DHMM verification the system speed is 
not doubled: this is also due to the present program implementation. We have singled 
out some small program modifications which can improve this point [461. 

3.7 Conclusions 

We have developed a multiDSP open architecture for signal processing, presently equipped 
with a master CPU and three DSPs, one for feature extraction and the other two for 
DHMM verification: in this configuration we have implemented three different kind of 
recognition algorithms: 

• the single-step isolated-word recognition (with full search on the whole vocabulary), 



www.manaraa.com

3.7 Conclusions 129 

Basic system Intermed system Final system 
CPU 12.5 Mhz CPU 20 Mhz CPU 20 Mhz 
DSP2·A only DSP2·A only DSP2·A and DSP2·B 

Avg. speech utterance duration 3.7 sec. 3.7 sec. 3.7 sec. 

beam search =20 10.5 sec. 8.52 sec. 6.2 sec. 

Avg. recognition time 

beam search =22.5 13.6 sec. 11 sec. 8.1 sec. 

beam search =20 2.8 2.3 1.67 

Recognition time/Utterance time 

beam search =22.5 3.7 3 2.2 

Table 3.12: Throughput results of continuous speech recognition system on 100 phrases 
of words into the 1008 words vocabulary 

• the two-step isolated-word recognition (with a first hypothesization stage and a 
second refinement stage), 

• the single-step continuous-words recognition. 

For all of all these implementations a rather satisfactory recognition accuracy has been 
measured in the speaker-dependent case with a thousand-word Italian vocabulary, with 
a high quality head-mounted microphone input. The input utterance is presently lim­
ited by an initial keystroke for the single word application and by an initial and a final 
keystroke for the continuous speech application. The isolated words case is handled in 
real time both in the single and in the double step approach; for wider vocabularies than 
we used the double step approach would be more appropriate: in the latter case, however, 
to have a better load balancing between the hypothesization and the verification steps it 
would be advisable to transport from the Motorola CPU to the TMS32020 at least the 
most computation-intensive sections of the hypothesization stage. In the connected word 
case the present configuration performs the recognition in 1.5 to 2 times the net input 
utterance time, and hence it is perceived by the user as operating in real time, taking 
into account the console interaction 7. The system has also been adapted to a German 
and to a French vocabulary and, although a formal evaluation has not been performed 
in these cases, similar accuracy and performances could be expercted. Our real time 
implementation shows that present technology is already adequate for speech recognition 
tasks of some complexity in a not-too-expensive system. We think also that the overall 

Tin fact between the two keystrokes we have an initial silence, the utterance and then a final silence. 



www.manaraa.com

130 3 The Real Time Implementation of the Recognition Stage 

architecture presented (i.e. the task partition and allocation, the intertasks dialogue, the 
hardware organized as common bus, local plus distributed biport memory) can be retained 
for further more ambitious goals, while by using new-generation faster and architecturally 
richer DSPs, supporting also floating point computations, we could insert in this frame­
work algorithmic improvements required for telephone input and speaker independence, 
excluding any keystroke interaction [24]. 



www.manaraa.com

Bibliography 

1. Y. Kawakami, H. Ishizuka, M. Watari, H. Sakoe, T. Hoshi, T. Iwata: "A micropro­
cessor for speech recognition", IEEE Journal on Selected Areas in Communications, 
vol. 3, pp. 369-376, March 1985 

2. R.E. Owen: "A VLSI dynamic time warp processor for connected and isolated word 
speech recognition", Proc. of the ICASSP '85, pp~ 985-988, Tampa, Fla., March 1985 

3. G. Quenot, J.L. Gauvain, J.J. Gangol£, J. Mariani: "A dynamic time warp VLSI 
processor for continuous speech recognition", Proc. of the ICASSP '86, pp. 1549-
1542, Tokyo, Japan, Apr. 1986 

4. J.R. Mann, F.M. Rhodes: "A wafer scale DTW multiprocessor", Proc. of the ICASS? 
'86, pp. 1557-1560, Tokyo, Japan, Apr. 1986 

5. R. A. Kavaler, M. Lowy, H. Murveit, R. R. Brodersen: "A Dynamic Time Warp 
Integrated Circuit for a 1000 word speech recognition system", IEEE Journal of 
Solid State Circuits, vol. 22, pp. 3-14, February 1987 

6. S.G. Glinski, T.M. Lalumia, D.R. Cassiday, Taiho Koh, C. Gerveshi, G. A. Wilson, 
J. Kumar: "The Graph Search Machine: A VLSI architecture for connected speech 
recognition and other applications", IEEE Proceedings, vol. 75, pp. 1172-1184, Sept. 
1987 

7. R. Cecinati, A. Ciaramella, G. Venuti, C. Vicenzi: "A dynamic time warping custom 
integrated circuit for speech recognition", Proc. of the EUSIPCO '86, The Hague, 
The Netherlands, pp. 1215-1218, Sept. 1986 

8. R. Cecinati, A. Ciaramella, L. Licciardi, G. Venuti: "Implementation of a dynamic 
time warp integrated circuit for large vocabulary isolated and connected speech recog­
nition", Proc. of EUROSPEECH '89, pp. 565-568, Paris, France, Sept. 1989 

9. A. Albarello, R. Breitschaedel, A. Ciaramella, E. Lenormand, R. Pacifici, J. Potage, 
J.P. Riviere, N. Scheibel, G. Venuti: "Implementation of an acoustical front-end 
using the TMS32020", Proc. of the Digital Signal Processing Conference, Florence, 
Italy, September 1987 

10. C. Erskine, S. Magar: "Architecture and applications of a second generation digital 
signal processor", Proc. of the ICASSP '85, pp. 228-231, Tampa, Fla., March 1985 

11. K.S. Lin, G.A. Frantz, R. Simar jr.: "The TMS32020 family of digital signal proces­
sors" , IEEE Proceedings, vol. 75, pp. 1143-1159, Sept. 1987 



www.manaraa.com

132 Bibliography 

12. D.B. Roe, A.L. Gorin, P. Ramesh: "Incorporating syntax into the level-building 
algorithm on a tree-structured parallel computer", Proc. of the IGASSP '89, pp. 778-
781, Glasgow, UK, May 1989 

13. R. Bisiani, T. Anantharaman, L. Butcher: "BEAM: an accelerator for speech recog­
nition", Proc. of the IGASSP '89, pp. 782-784, Glasgow, UK, May 1989 

14. S. Chatterjee, P. Agrawal: "Connected speech recognition on multiple processor 
pipeline", Proc. of the IGASSP '89, pp. 774-777, Glasgow, May 1989 

15. W. Fisher: "IEEE P1014 - A standard for high performance VME bus", IEEE Micro, 
vol. 5, pp. 31-41, Febr. 1985 

16. D. Gustavson: "Computer buses - A tutorial", IEEE Micro, vol. 4, pp. 7-22, Aug. 
1984 

17. VME Bus Manufacturers Group: VME Bus Specification Manual. [with VME Revi­
sion B, August 1982, and VMX Revision A, October 1983] 

18. P. Harold: "Powerful local buses join the VME bus", EDN, pp. 199-208, Apr. 18, 
1985 

19. M. L. Fuccio, R. N. Gadenz, C. J. Garen, J. M. Huser, B. Ng, S. P. Pekarich: "The 
DSP32C: AT&T's second generation Floating Point Digital Signal Processor", IEEE 
Micro, vol. 8, pp. 30-48, Dec. 1988 

20. P. Papamichalis R. Simar, Jr.: "The TMS320C30 Floating Point Digital Signal Pro­
cessor", IEEE Micro, vol. 8, pp. 13-29, Dec. 1988 

21. E. A. Lee: "Programmable DSP architectures: Part I", IEEE ASSP Magazine, vol. 
5, pp. 4-14, Oct. 1988 

22. E. A Lee: "Programmable DSP architectures: Part II" , IEEE ASSP Magazine, vol.6, 
pp. 4-14, Jan. 1989 

23. A. Dinning: "A survey of synchronisation methods for parallel computers", IEEE 
Computer, vol. 22, pp. 66-77, July 1989 

24. ESPRIT II Project N.2218 (SUNDIAL). Technical Annex 

25. D. MacGregor, D. Mothersole, B. Moyer: "The Motorola MC68020", IEEE Micro, 
vol. 4, pp. 101-118, Aug. 1984 

26. VERSADOS Operating System - Technical Documentation 

27. C. Huntsman D. Cawthron: "The MC68881 floating point coprocessor", IEEE Micro, 
vol. 3, pp. 44-54, Dec. 1983 

28. G.W. Cherry: Pascal Programming Structures for Motorola Microprocessors. Reston 
Publishing, Prentice Hall, 1982 



www.manaraa.com

Bibliography 133 

29. M. Ajmone Marsan, G. Balbo, G. Conte: "Performance models of multiprocessor 
systems", MIT Press Series in Computer Systems, Chapters 9 and 10, 1986 

30. A. Ciaramella, G. Venuti: "Vector quantization firmware for an acoustical front end 
using the TMS32020", Proc. of the ICASSP '87, pp. 1895-1898, Dallas, Tex., Apr. 
1987 

31. F.J. Harris: "On the use of windows for harmonic analysis with the Discrete Fourier 
Transform", IEEE Proceedings, vol. 66, pp. 51-83, , Jan. 1978 

32. E. O. Brigham: The Fast Fourier Transform, Sect. 10-10, pp. 163-171. Prentice Hall, 
1974 

33. L.R. Morris: "Structural considerations for large FFT programs on the TI TMS32010 
DSP microchip", Proc. of the ICASSP '85, pp.42.13.1-4, Tampa, Fla., March 1985 

34. P. Kabal, B.Sayar: "Performance of fixed-point FFT's: rounding and scaling consid­
erations", Proc. of the ICASSP '86, pp.6.3.1-4, Tokyo, Japan, Apr. 1986 

35. S. Prakash, V.V. Rao: "Fixed point error analysis of Radix-4 FFT", Signal Process­
ing, vol.3, pp.123-133, Apr. 1981 

36. K. H. Davis, P. Mermelstein: "Comparison of parametric representations for mono­
syllabic word recognition in continuously spoken sentences", IEEE trans. A SSP, 
vo1.28, pp. 357-366, Aug. 1980 

37. A. Kaltenmeier: "Acoustic/phonetic transcription using a polynomial classifier and 
Hidden Markov Models" Proc. of the Montreal Symposium on Speech Technology, 
pp. 95-96, Montreal, Canada, July 1986 

38. P. Capello, G. Davidson, A. Gersho, C. Koc, V. Somayazulu: "A systolic vector quan­
tization processor for real time speech coding", Proc. of the ICASSP '86, pp. 41.1.1-4, 
Tokyo, Japan, Apr. 1986 

39. P. Laface, G. Micca, R. Pieraccini: "Experimentals results on a large lexicon access 
task", Proc. of the ICASSP '87, pp. 809-812, Dallas, Tex., Apr. 1987 

40. M. Cravero, R. Pieraccini, F. Raineri: "Definition and evaluation of phonetic units for 
speech recognition by Hidden Markov Models", Proc. of the ICASSP '86, pp. 42.3.1-
4, Tokyo, Japan, Apr. 1986 

41. L. Fissore, E. Giachin, P. Laface, G. Micca, R. Pieraccini, C. Rullent: "Experimental 
results on large vocabulary continuous speech recognition and understanding", Proc. 
of the ICASSP '88, pp. 414-417, New Jork, NY, Apr. 1988 

42. L. Fissore, P.Laface, G. Micca, R. Pieraccini: "Interaction between fast lexical access 
and word verification in large vocabulary continuous speech recognition" Proc. of the 
ICASSP '88, pp. 279-282, New York, NY, Apr. 1988 



www.manaraa.com

134 Bibliography 

43. L. Fissore, P. Laface, G. Micca, R. Pieraccini: "Very large vocabulary isolated utter­
ance recognition: a comparison between one pass and two pass strategies", Proc. of 
the /CASSP '88, pp. 203-206, New York, NY, Apr. 1988 

44. G. Micca, R. Pieraccini, P. Laface, L. Saitta, A. Kaltenmeier: "Word Hypothesization 
and Verification in a Large Vocabulary", Proc. of 3rd Esprit Technical Week, pp. 845-
853, Brussels, Belgium, Sept. 1986 

45. A. Ciaramella, G. Venuti: "Dynamic programming with hidden markov models on a 
TMS32020 digital signal processor", Proc. of EUS/Pca '88, pp. 751-754, Grenoble, 
France, Sept. 1988 

46. A. Ciaramella, D. Clementino, R. Pacifici: "Characterization of a large vocabu­
lary isolated words and continuous speech recognizer", Proc. of the Eurospeech '89, 
pp. 437-440, Paris, France, Sept. 1989 



www.manaraa.com

Chapter 4 

The Understanding Algorithms 

Roberto Gemello, Egidio Giachin, Claudio Rullent (CSELT) 

4.1 Overview 

4.1.1 Introduction 

The final goal of a continuous speech understanding system is the generation of a repre­
sentation of the utterance meaning, beside the recognition of the utterance words. From 
this representation a proper action can be taken in order to satisfy the needs of the user 
that interacts with the system (for instance by giving him an answer to a question). Both 
activities, word recognition and understanding, have to be performed and should take 
advantage of available knowledge about words, language and domain. Recognition must 
use that knowledge as a source of constraints for word disambiguation while the under­
standing activity is entirely based on that knowledge and requires the same effort as in 
the case of written natural language understanding. 

The first large-scale effort to integrate recognition and understanding was accom­
plished within a DARPA sponsored project in the late 1970s. However, the techniques 
they used there for knowledge representation (mainly context-free semantic grammars) 
were of low complexity, as knowledge about language and domain had to be used for both 
recognition and understanding. That resulted in a limitation of the potentialities of the 
natural language understanding activity. Written natural language processing techniques, 
on the other hand, have considerably increased their power and flexibility in recent times, 
mainly in the area of representation of syntactic and semantic knowledge. New repre­
sentational tools have been developed, more powerful and expressive than context-free 
grammars although more complex. As a general trend, keeping separate representations 
for syntactic and semantic knowledge is considered beneficial to better exploit specific 
features and regularities. 

When this project was started in the mid-1980s, it was felt that taking advantage 
of such improved techniques could result in a more efficient way of exploiting language 
constraints for a system whose purpose is not limited to recognition but includes meaning 
comprehension. In other words, an approach has been followed in which the stress on 
language processing techniques is as strong as on signal processing techniques. Conceptu­
ally, the basic philosophy was to start from a state-of-the-art system for written language 
understanding and extend its capabilities to deal with word lattices rather than definite 
word sequences. 

A word lattice is a collection of Word Hypotheses pertaining to a single utterance. Each 



www.manaraa.com

136 4 The Understanding Algorithms 

UITEREO SENTENCE: 
"OIMMI LA LUNGHEZZA DEL TEVERE" 
("TELL ME THE LENGTH OF THE TEVERE") 

WORD HYPOTHESES 

01 LUNGHE 
1-1 

DIMMI 
LUNGHEZZA 

LA ""I ------4 ....... 
MILANO 

~----- ... 

CHE 
~ 

ANCHE 

ESSA 

1--------1 

TIME 

TEVERE 

DELTA 

AVERE 

DEL 

NERO 

ALTE 

1--- - -----I 

Figure 4.1: Structure of the lattice of word hypotheses 

word hypothesis is characterized by a score reflecting the quality of the match between the 
observed signal and the word model (Fig. 4.1). The number of word hypotheses has to be 
high enough to contain the correct hypotheses (i.e. those corresponding to the actually 
uttered words). Improvements in signal processing and pattern recognition techniques 
have produced (and will furthermore produce in the future) a reduction in the number 
of wrong word hypotheses and an improvement in the reliability of their scores; thus, the 
importance of having well-grounded natural language processing tools will become even 
greater in perspective, and we expect that the approach that has been followed in this 
project will allow us to converge towards a global system using the best characteristics of 
the two different classes of techniques, signal processing and language processing, suitable 
for the two levels of elaboration. 

At present the above mentioned approach is studied by different reasearch groups. 
Among them are the groups at University of Erlangen-Nuernberg [5], Philips [28], Siemens 
[29]' CNET [2], Carnegie Mellon University [19] and SRI [40]. A common element of most 
of these approaches is the use of a lattice of word hypotheses as the input of the un­
derstanding stage (this feature has also been used in some systems aiming essentially at 
recognition only [27], [25]). These approaches to speech understanding are characterized 
by a more declarative way of representing syntactic and semantic knowledge compared 
to the projects developed in the previous decade, but in our opinion there are still some 
critical aspects that require new solutions. The final part of the introduction discusses 
two important aspects that have been analyzed in our research and whose solutions rep­
resents the most innovative aspect of SUSY (Speech Understanding SYstem), the system 
developed at CSELT. 

A convincing answer to the problem of an effective integration between syntactic 
knowledge and semantic knowledge is still to come. The problem is from one side to 
maintain independent and highly declarative representations for both semantic and synt­
actic knowledge and from the other to use them in an integrated way in order to exploit 



www.manaraa.com

4.1 Overview 137 

constraints as soon as possible. While this aspect is important for written natural lan­
guage understanding [6], it is vital for speech, where the search space is very large, being 
the non-determinism of parsing added to the uncertainty of input data. 

Another crucial problem is that of control, that is, of selecting the appropriate analysis 
actions in order to achieve high efficiency while keeping sufficiently small the probability 
of incorrect understanding. While some speech understanding systems based on the use 
of semantic grammars were really concerned about the problem of control (e.g. [42]), now 
this aspect seems to be underestimated. That is not surprising, as an increased complexity 
of the representation formalisms for syntax and semantics makes a formal control policy 
hard to reach. 

This section aims at giving a general overview of the problems outlined above and the 
solutions proposed by our system [14, 13, 30J. The section will cover the essentials about 
language modeling, parsing and control. 

4.1.2 Some Basic Requirements of a Parser for Speech 

The understanding stage needs to detect, in the lattice, the best scoring sequence of 
word hypotheses covering the whole utterance and coherent according to the models of 
the language and of the domain. The presence of word hypotheses spread all over the 
utterance instead of a sequence of words requires a new kind of parser whose main features 
are related to a very high flexibility in the control strategy. Some features of the parser 
are the following: 

• It is important to have powerful control strategies based on the combination of word 
scores. An efficient parser must take this aspect into account. 

• Due to the limitations inherent in the recognition stage, a "tolerant" parser IS re­
quired: 

Contiguous word hypotheses may slightly overlap, and gaps may exist between 
them. 

Very short words (e.g. articles) are normally difficult to detect by the recogni­
tion level and may be missing from the lattice; if they do not convey essential 
semantic information the parser should not rely on them to understand the 
sentence. 

These requirements argue against a left-to-right parser. 

• The parsing strategies must be suitable for parallelism. Only a highly parallel 
machine can perform speech understanding in real time. See [3], [16J for a discussion 
of a possible way of exploiting parallelism from the parsing strategies adopted by 
SUSY. 

• Syntactic and semantic knowledge must be separately defined and used in a joint 
way. Such separation allows a reduction of the time required for an expert to define 
an application for a new domain, i.e. to declare all the knowledge required to adapt 
the speech understanding system to the new domain. 



www.manaraa.com

138 

~mCE~ 

WOAD 
HYPOTHESES 

PARSER 

unERAHCE 
MEANING 

REPRESENTAnON 

4 The Understanding Algorithms 

INFOAllAnOH 
ACCESS 6 

NATURAl ~NGUAGE 
ANSWER GENEAAnON 

NATURAl 
~GUAGE 

ANSWER 

Figure 4.2: Simplified overall architecture of the understanding module 

A simplified scheme of the understanding system is shown in Fig. 4.2. A recognition 
level, that makes no use of syntactic and semantic knowledge, generates a lattice of scored 
word hypotheses that constitutes the input data to the understanding level. The uttered 
sentences are questions aimed at extracting information from a data base pertaining to a 
given domain (Italian geography). 

The lattice is processed by a parser that recognizes the most probable word sequence 
and generates an internal formal representation for the meaning of such a word sequence. 
The formal representation, a conceptual graph of domain concepts connected by rela­
tions, is used to extract the required information from the database. Starting from such 
information a natural language answer is generated and given to the user. 

The parser is based on the use of a dictionary and on a set of syntactic and sem­
antic pieces of knowledge that are briefly outlined in the following section. The internal 
structure generated and used by the parser is a network of phrase hypotheses. So the 
parser activity consists in continuously generating new phrase hypotheses that represent 
alternative or cooperative paths of the parsing activity. For a number of reasons that 
should become clear later on, we are not dealing with chart parsing [41], even if some 
commonalities do exist, mainly the fact that both generate and use a network structure. 

4.1.3 Knowledge Sources from Dependency Rules and Conc­
eptual Graphs 

The parser, during its activity, makes use of the following different kinds of knowledge: 

• A dictionary, where each domain word is characterized by its morphological and 
semantic features. 

• A set of dependency rules (Dependency Grammar formalism, [20]) augmented with 
rules for controlling morphological agreement conditions; dependency rules must 
constitute a subset of the language sufficient to cover the application. 

• A set of caseframes [11] expressed using the conceptual graphs formalism [37]. They 
describe domain knowledge and are represented by domain concepts connected by 
conceptual relations. 



www.manaraa.com

4.1 Overview 139 

Starting from the last two knowledge bases and from additional syntax/semantics mapping 
knowledge, an integration of syntax and semantics is performed, generating items called 
Knowledge Sources (KS) in the following. 

Each KS integrates different types of knowledge. The main body of knowledge is 
a problem-solving structure where the different subproblems are not independent but 
constrained by different kinds of knowledge: temporal constraints, morphological and 
grammatical constraints, etc. 

This structure results from a "compilation process" that integrates the semantics of 
one or more caseframes (expressed by conceptual graphs) with the structure of one or 
more dependency rules. This compilation process is performed off-line through the use 
of "mapping" information, that relates implicit grammatical relations of the dependency 
rules with the semantic relations of conceptual graphs. 

A KS is also characterized, in addition to the problem-solving structure, by the remain­
ing morphological, syntactic and semantic information. This knowledge is transformed 
off-line into special structures suitable to perform efficiently the activity of constraints 
propagation. All the other kinds of knowledge used by a KS are expressed through proce­
dures. For instance a procedure (that makes use of thresholds) represents knowledge about 
the recognition system word-spotting characteristics; it is used to impose constraints on 
the allowed gaps and overlaps between word hypotheses. 

The problem-solving structure of the KS permits them to be seen as constituting a 
Deduction System, i.e., roughly speaking, a system able to run forward and backward. 
The actions that a KS can perform when it is triggered can be described in terms of five 
operators; some of them behave in a forward fashion, some in a backward fashion, while 
others allow the generation of new deductive processes and the integration of different 
ones. 

The description of dependency rules, conceptual graphs and their integration into KSs 
is contained in Sects 4.2, 4.3 and 4.4. 

4.1.4 The Importance of Control Strategies 

The word lattice is usually characterized by a lot of spurious word hypotheses intermixed 
with the correct ones (i.e. those that correspond to words really uttered and covering the 
given time interval). Some incorrect word hypotheses may also happen to have a better 
score than the correct ones. 

Two reasons for an effective control strategy 

In a problem-solving approach to speech understanding two main problems arise: 

• There is a risk of erroneous understanding, that is, spurious word hypotheses of the 
lattice can lead to incorrect solutions before the right one is found. So the utterance 
can be incorrectly understood. 

• The search space is very large, adding the non-determinism typical of the parsing 
to the uncertainty of input data. The whole search space cannot be explicated. 



www.manaraa.com

140 4 The Understanding Algorithms 

The elimination of incorrect solutions requires a method for comparing solutions so that 
the best one can be selected as the correct one. A number, called the Quality Factor, is as­
signed to them; this number depends only on the word hypotheses involved in the solution. 
So a formal probabilistic method assigns a number, the quality factor, to combinations 
of word hypotheses, starting from their scores and from their time intervals. Among the 
tested methods of assigning quality factors, the following one has been selected: 

• Score density with or without shortfall [42]. 

As regards the second problem, quality factors must be used also to direct the search, 
in order to find the solution long before having to perform an impossible exhaustive search. 
From the probabilistic point of view the most natural way of dealing with scored input 
data is to start with the best word hypotheses and trying to combine them together until 
a solution is obtained. The problem is the necessity of exploiting constraints from domain 
knowledge as soon as possible to drastically reduce'the combinatorial activity. On the 
other hand a good way of exploiting domain constraints is a bottom-up parsing strategy 
guided by the quality factors of the word hypotheses in the lattice. But this approach 
is inadequate when the search space is very large due to a great amount of noise. In 
fact dangerous bottlenecks cannot be avoided if expectations are not considered. As an 
example consider a situation where a low-level constituent, part of the solution, has to be 
formed using a very bad word hypothesis WH1 (this could easily happen). The problem 
is that the solution can have a good quality factor (the bad score of WH1 is balanced by 
the good scores of the other word hypotheses) but it can be delayed by WH1 because a 
lot of word hypotheses having a score better than WH1 but really worse than the quality 
factor of the solution have to be considered. 

The role of expectations: Integrating top-down and bottom-up parsing strate­
gies 

An important feature of SUSY to cope with these difficulties is the possibility of creating 
expectations at the highest levels. This is always possible in our approach because each 
KS has been obtained from a caseframe and can be triggered by a word that represents 
the caseframe header. So a good word hypothesis always has a KS that can be activated 
by it. In addition the use of dependency rules perfectly suits this point: each node of 
a dependency tree is taken by a word, and such a word hierarchy perfectly allows the 
generation of high-level expectations. 

The informal conclusion is that in some cases good word hypotheses cause the parsing 
to proceed bottom-up while in other cases they first create expectations (goals) and then 
cause the parsing to proceed top-down, looking for word hypotheses when necessary in 
order to perform single backward steps. The acquisition of a new word hypothesis dur­
ing a top-down step usually worsens the quality factor of a subgoal (incomplete phrase 
hypothesis), delaying its processing, while in the meantime other phrase hypotheses will 
be processed. Integration among bottom-up and top-down steps is vital: having to solve 
an incomplete phrase hypothesis, a check is made to see if a' suitable complete phrase 
hypothesis has already been generated and vice versa. 



www.manaraa.com

4.1 Overview 141 

Deduction instances and search 

The understanding of an utterance is completed when a solution S involving a certain 
set w1, ... ,wn of word hypotheses is obtained. The quality factor resulting from w1, ... ,wn 
is supposed to be the best one among the possible solutions. Such solution can be rep­
resented by a Deduction Tree: the AND tree whose nodes are facts (complete phrase 
hypotheses) and (sub )goals (incomplete phrase hypotheses). Following the informal guide­
lines of the previous section, a solution is obtained starting from one or more initial word 
hypotheses (the best ones) and then performing predictions, bottom-up and top-down 
steps and joining constituents. 

Let us consider the simple case of a single initial word' hypothesis that performs a 
prediction generating a goal that is solved through a sequence of top-down steps. From 
the probabilistic point of view, new word hypotheses are connected one by one (assuming 
they satisfy all the required constraints) to the initial one until the solution is reached, 
connecting all the word hypotheses w1, ... ,wn. We call this activity a Deductive Process 
and each intermediate step is called Deduction Instance (DI). Some steps consist in adding 
a new word hypothesis to the existing ones, others represent only activities performed by 
a KS that do not involve the acceptance of a new word hypothesis. The OR alternatives 
of the overall search process are taken into account by different DIs. Each deduction 
instance can be represented by its deduction tree ·and it is characterized by a quality 
factor obtained applying a selected probabilistic method to the word hypotheses of the 
deduction tree. 

A similar situation happens when bottom-up steps are considered. In this case DIs 
have deduction trees whose nodes are all facts; they are called fact DIs while the others 
are called goal DIs. A single deductive process leading or not (if it fails) to a solution is 
a sequence of DIs. 

Joining deduction instances 

The optimal result would be obtained if the quality factors corresponding to the sequence 
of DIs worsen gradually in quality, converging to the quality factor of the solution. The 
required integration among bottom-up and top-down steps can be obtained by merging 
together two deductive processes that have previously evolved independently: from two 
DIs a new DI is generated. 

With some simplifications the whole deductive activity can be seen as a search in 
a state space. A state is a deductive process at a certain point of its evolution, i.e. a 
deduction instance. Operators can be applied on these states performing single prediction, 
bottom-up, top-down or merge steps. To each state a quality factor is also associated, 
then a best-first search can be performed; the state priority is given by the DI quality 
factor. On each state all the possible operators are applied. 

The description of the conceptual foundation of the parsing strategy, the definition of 
deduction instances and the global strategy is contained in Sect. 4.5. In addition Sect. 
4.7 illustrates the solutions to the problem of short words missing from the lattice. 



www.manaraa.com

142 4 The Understanding Algorithms 

4.1.5 Control Strategy and Operators 

The control of the deductive activity is carried out by a Deduction Scheduler that at every 
cycle selects the best item among the remaining word hypotheses and the DIs (phrase 
hypotheses generated so far and inserted into a network called the Hypothesis Network). 
All the items have a priority given by their quality factors (in the case of a DI) or by their 
scores (in the case of a word hypothesis). Each goal DI is also characterized by a Current 
Subgoal, selected among its unsolved subgoals. If the deduction scheduler selects a DI, 
the Deduction Cycle is entered, otherwise the Activation Cycle is performed. 

The activation cycle is executed when the best DI has a quality factor worse than the 
score of the best word hypothesis. In that case such a word hypothesis is extracted from 
the lattice, and the activation operator is applied, making predictions. Given a KS the 
operator decides if it can be triggered by the given word hypothesis; if so a DI is generated 
and inserted into the hypotheses network. Quality factors are assigned to the new DIs. 
Conceptually this operator creates expectations. 

In the deduction cycle the selected best DI is given to the KS. The activities per­
formed by the KS when it is triggered can be described in an abstract way through five 
operators that represent the process of generating new hypotheses starting from others. 
The characteristics of the triggering DI define which operator is applicable. Each operator 
application represents an alternative continuation of the deductive process leading to the 
selected DI. The operators are described in Sect. 4.5.13. 

4.1.6 Representing Deduction Instances with Memory Struc­
tures 

An aspect that has to be considered when representing DIs with memory structures is to 
reduce the amount of memory required and to properly organize the memory structures 
in order to simplify operators application. 

The most trivial way of implementing deduction instances would be using an explicit 
deduction tree for each of them, but to keep memory occupation within reasonable limits 
it is necessary to make DIs share common parts, if any. A natural choice is to use AND-OR 
trees; unfortunately, a problem arises when constraint propagation is required, as in our 
case: the AND-OR trees representation assumes the OR alternatives to be independent 
from one another, but that is not true if constraints propagation has to be taken into 
account. 

In order to continue to take advantage of the use of AND-OR trees even when con­
straint propagation has to be performed, a new memory representation has been devised 
and a limitation is imposed on the possible topologies a deduction tree may assume. 
In this way the sharing of similar but differently constrained parts is possible, at the 
cost of some limitations on the ways deductive processes can go on. Such limitations do 
not compromise integration among top-down and bottom-up activities. The allowed tree 
topologies are called Canonical and the resulting DIs-are called Canonical DIs. 

A Canonical DI can be put into a one-to-one relation with one of its particular sub­
structures. This substructure, which is a one-level AND subtree, has been called the 
Representative of the DI because the information provided by it is sufficient to carry out 
the application of an operator on the CDI. In other words, as far as an operator applica-



www.manaraa.com

4.2 Representation of Syntax 143 

tion is involved, we can use the Representatives instead of the whole CD!. Representatives 
are implemented by a memory structure called Phrase Hypothesis. 

Section 4.6 describes these problems and, in addition, the application of the operators 
on the memory structures is illustrated in detail. 

4.1.7 Implementation, Development System and Results 

SUSY was first implemented on a Symbolics 3600 Lisp Machine using the Common Lisp 
language; later on it was implemented into the C language on a SUN. A suitable Devel­
opment System has also been implemented, to provide a flexible and comfortable envi­
ronments to work with. The Development System permits a comfortable development of 
the required algorithms and, thanks to its special purpose debugger, their relatively easy 
debug and modification. The Development System has also proved very useful for the 
insertion of the knowledge bases into the system. Section 4.8 provides a brief description 
of the experimental results. 

4.2 Representation of Syntax 

4.2.1 Introduction 

Syntactic and semantic knowledge has often been viewed in a speech understanding sys­
tem as a set of constraints for improving the recognition activity. Thus this knowledge 
has been completely integrated within the recognition algorithms, which are mainly in­
volved in statistical/phonetic processing of input signal. For this reason the syntactic and 
semantic knowledge involved has often been quite simple and not sufficiently flexible and 
linguistically powerful (e.g. semantic grammars, often finite state automata). As already 
discussed in Sect. 4.1, we wanted to move in a different way, taking more into account 
the natural language understanding aspects in the case of speech too. 

In SUSY a domain independent speech recognition activity is followed by a syntactic 
and semantic based understanding activity. The latter activity is performed by a natural 
language processing system that is able to deal with a lattice of lexical hypotheses, that 
is, the output that a recognition stage can give using only phonetical-lexical knowledge. 

The syntactic and semantic knowledge bases of this natural language understanding 
system must be flexible, i.e. easy to maintain, modify and expand; and linguistically 
powerful enough. Since they are used in a system that deals with a highly ambiguous 
input, they must be sufficiently tight and exploit those constraints (syntactic, semantic 
and agreement constraints) which can make easier the recognition and the understanding 
of the uttered sentence. The claim for flexibility has been satisfied by employing separated 
syntactic and semantic knowledge bases. This way, it is possible to better exploit specific 
representations that address respectively syntax and semantics, and ease of maintenance 
is insured because, if for example the semantic domain has to be changed or modified, 
little or no modification is required for the syntactic knowledge base. 

Syntactic knowledge uses the dependency grammar formalism [20, 7] augmented with 
morphological agreement rules. Following the semantic caseframe paradigm [11], the 
semantic knowledge is represented through conceptual graphs [37] representing semantic 



www.manaraa.com

144 4 The Understanding Algorithms 

caseframes. Although these knowledge bases are utilized in a speech understanding con­
text, they are general and can be used by any natural language understanding system, 
e.g. for written language processing. 

The two knowledge bases are seen as independent sources of knowledge; on the other 
hand, for the sake of efficiency, it is necessary to use both syntactic and semantic con­
straints during the parsing process. To obtain this result, the dependency grammar rules 
and the conceptual graphs are compiled off line into a set of Knowledge Sources. To make 
the off-line compiler work properly, a further source of knowledge had to be introduced. 
This type of knowledge describes the relations between syntax and semantics and it is 
sometimes called mapping knowledge. 

4.2.2 Interaction Between Syntactic and Semantic Knowledge 

A basic decision that has been taken from the beginning and that we think to be very 
crucial in developing a speech understanding system is the possibility of defining syntactic 
and semantic knowledge as two independent activities. Of course this is a goal that can not 
be achieved completely: there is no clearly defined division between syntax and semantics. 
In addition, there is the problem of efficiency for the parsing algorithms: in the context 
of speech (i.e. when the parser must operate on a lattice of word hypotheses) it becomes 
highly inefficient to perform a syntactic analysis first and a semantic validation afterwards. 
That means that syntax and semantics must interact tightly at processing time in order 
to exploit the constraints as soon as possible. 

The possibility of defining syntactic knowledge and semantic knowledge as two inde­
pendent activities is important because it reduces the effort required to adapt a given 
understanding system to a new semantic domain. In fact the use of a semantic grammar, 
where syntax and semantics are melted together, requires a complete redefinition of all 
the rules (usually context-free rules) that constitute the knowledge base of the system; in 
addition the number of rules could be very large if a broad coverage is required. 

When syntactic and semantic knowledge are declared separately, there is the above 
mentioned problem of making syntax and semantics interact in a way suitable to reduce 
the search activity by best exploiting constraints. A possible solution could be to make 
this interaction to happen at processing time [6) while another possibility is based on a 
certain amount of compilation (or merge) of the two different kinds of knowledge into a 
unique structure [39). 

An important problem that has to be faced in both cases is the need of knowledge 
about the relationships between the syntactic structures and the semantic ones. Either 
implicitly or explicitly such knowledge must be used to properly constrain the search 
using both kinds of information together. This knowledge is called mapping knowledge 
in the sense that it represents a kind of mapping between syntax and semantics [8). 
Mapping knowledge will be described in Sect. 4.4 devoted to illustrate the compilation 
of conceptual graphs and dependency rules into knowledge sources. 

Let us now summarize the basic points concerning knowledge representation and pars­
ing: 

• Different representation formalisms are used for syntax and for semantics. 



www.manaraa.com

4.2 Representation of Syntax 145 

• The syntactic formalism is a dependency grammar augmented with morphological 
agreement rules. 

• The structure that is used at processing time (called the knowledge source, KS) 
must contain both syntactic and semantic knowledge. . 

• At processing time syntactic and semantic constraints are exploited simultaneously: 
i.e. the generated hypotheses must be syntactically and semantically correct. 

• Knowledge sources must permit the probabilistic control strategy outlined in the 
summary and described in detail in the following sections. 

The remaining part of Sect. 4.2 will be devoted to describing syntactic knowledge 
while following sections will illustrate semantic knowledge and the off-line compilation 
process. 

4.2.3 Dependency Grammar 

Definitions 

Let us consider a dictionary V j each word of the dictionary is characterized by a lexical 
category. Let C be the set of these categories. We define a Dependency Grammar (DG) 
to be the couple 

DG = {C,R} 

where C is the set of lexical categories and R is a set of rules of the kind: 

with XiECjn~O 

where Xo is called the governor and Xl, ... , Xn are called dependents of the governor Xo. 
The symbol * shows the governor position with respect to its dependents. The ordered 
sequence Xl> ... , XIc is made up of left dependents while Xlc+l, ... , Xn is made up of right 
dependents. 
The subset Rt of R includes the rules of the kind 

Xi = * 

These rules are called terminal rules because their governors have no dependents. 
The result of parsing a sentence using this grammar model is a set of dependency 

trees. They have the following features: 

• Each node of the tree (not only the leaves) is associated with a word of the input 
sentence. 

• The sons of any subtree root are divided into two ordered sets called left and right 
dependents. 

• The input sentence can be obtained by projecting the nodes of the dependency tree, 
that is, visiting it in symmetric order (left subtrees, root, right subtrees) 

• The root of the dependency tree is the governor of the sentence. 



www.manaraa.com

146 

An example 

Let us consider 
a) the lexical categories: 

4 The Understanding Algorithms 

VERB = {vide} 
(English Translation) 
saw 

NOUN = {battello, binocolo} 
ART = {un, il} 
PREP = {con} 
PROPER-NOUN = {Giovanni} 
ADJ = {grosso} 

b) the rules: 

boat, binoculars 
a, the 
with 
John 
big 

1) VERB = PROPER-NOUN * NOUN NOUN 
2) NOUN = ART ADJ * 
3) NOUN = PREP ART * 
4) ART = * 
5) ADJ = * 
6) PREP = * 

Then the sentence: 
Giovanni vide un grosso battello con il binocolo 
(John saw a big boat with the binoculars) 
can be generated (and therefore be parsed) by applying the rules shown in Fig. 4.3. 

Relations between dependency grammar and context-free grammar 

A dependency grammar (DG) is equivalent to a context-free grammar (CFG) with word 
dependency information attached to each production. That is, the right-hand side of 
each rule of the grammar must have a "distinguished symbol" that plays the role of main 
symbol. The governor of the phrase associated with that rule is the governor of the phrase 
that is associated with the distinguished symbol. All other words that are part of the 
phrase associated with the production are dependents, at some level, of this governor. The 
example in Fig. 4.4 intuitively shows the correspondence between the two formalisms. 

Remarks on dependency grammars 

The DG follows the Head-Modifier linguistic paradigm. According with this paradigm 
each phrase is made up of a main word (Head) and some other words relating to the head 
which modify its role (Modifiers). Recursively the main head modifiers of a sentence will 
be, in their turn, heads of component phrases, and so on. The linear structure of the 
input sentence can be delinearized into a head-modifiers tree (dependency tree). 

This general paradigm can be interpreted in many ways: for example from a syntactic 
point of view heads and modifiers can be defined on the grounds of syntax; from a semantic 
point of view concepts can be thought as modified by other concepts. 



www.manaraa.com

4.2 Representation of Syntax 

VERB VERB 
VERB 

/\~~/\~ 
J) 

==!> 
PROPER-NOUN NOUN NOUN PROPER-NOUN NOUN NOUN 

VERB 

b/\~ 4) 5) 8) 

===>---==> 

// 
ART ADJ 

VERB 
(saw) 

/\~ 
PROPER- NOUN NOUN NOUN 

147 

~'~/7/7 
ART AD. PREP ART 

"·4;;~"'·nl 
ART ADJ PREP ART 
(the) (big) (with) (the) 

Figure 4.3: Example of dependency parse tree 

GRAMMAR RULES (*) : 

<5>:= <MP><VP> 
<NP>:= <ART><AOJ><HQl,IH> 
<VP>:= <VERB><MP> 
<NP>:= <ART><HQl.IH> 

PARSE TREE: 

<VERB>:= EATS 
</IKU/>:: CAT I MOUSE 
<ART>:: THE 
<AOJ>:= BIG 

(0) THE DISTINGUISHED SYMBOLS 
ARE UNDERLINED 

/<S'~ __ \, 
j<N''\,,\ ,/'/ .. '\ 

<ART> <AOJ> <NOUN> I , <VERB> , 

I I I ,: ( I / MP \'''''''\\, the big cat -" ... eat. 

<ART> <NOUN>" 

I ) 
" mouse the 

Figure 4.4: Correspondence between dependency and context-free parse trees 



www.manaraa.com

148 4 The Understanding Algorithms 

The most interesting feature of DG is the concept of governor (head): every phrase 
parsed using a DG must include a word with the role of head; if this word is not found, 
the phrase is not recognizable by the DG. This fe~ture can be exploited when a parsing 
strategy operating on complex inputs is required, as in the case of speech, where a lattice 
of word hypotheses all over the utterance constitutes the system input. This feature of the 
dependency grammar formalism is the main reason why this formalism has been selected 
among others for continuous speech parsing. In fact it allows the generation of expec­
tations even at the highest levels, starting from word hypotheses with good score. This 
point will be illustrated in detail during the description of the parsing control strategy. 

The problem of finding a dependency tree on a sentence segment can be reduced to 
three subproblems: 

1. finding the governor; 

2. finding the left subtrees; 

3. finding the right subtrees. 

The problem of finding the governor is primitive and can be solved simply by searching 
in the input words. Of course, if that problem is not solved (that is, there is no proper 
governor), it is worthless to go on with the others. Thus the need to find a governor 
can give a useful heuristic for cutting down at every step the search activity required for 
sentence parsing. 

4.2.4 Morphological Agreement Rules 

The standard dependency grammar model does not allow us to constrain the generation of 
dependency trees on the grounds of morphological agreement. In fact, dependency rules 
consider only lexical categories and do not take into account the morphological variables 
(e.g. person, number, gender, etc.). For example, the rule 

VERB = ART ADJ NOUN * ART ADJ NOUN 

allows the recognition of the sentence: "n grossi gatta cacciano i piccola topi" ("The 
big cat chase the small mice"), that is incorrect from the point of view of morphological 
agreement (notice that in the Italian version of the example the mistake is much more 
evident). 

In the case of natural language parsing this fact does not necessary constitute a 
problem: the purpose is to understand, not to check the syntactic correctness of the 
sentence. But morphological agreement represents additional constraints in the case of 
speech understanding to reduce the amount of parsing activity. In fact, by exploiting 
morphological agreement constraints, the possible combinations of words can be reduced. 
Dependency rules should then be augmented with some mechanisms for morphological 
agreement. We define these mechanisms as agreement rules. These rules are associated 
1:1 with the dependency rules. Then, if a dependency grammar DG generates the language 
L, the same grammar augmented with a set of agreement rules C, DOe, will generate a 
language Le , with Le included in L. 



www.manaraa.com

4.2 Representation of Syntax: 149 

Structure of agreement rules 

Let us describe the structure of the agreement rules that augment the dependency rules. 
Each agreement rule relates to a dependency rule. To each element (governor or depen­
dent) of the dependency rule (lexical category) is associated a set of agreement constraint 
conditions pertaining to morphologic features meaningful for that element. For every 
feature the constraints can be: 

1. Constant constraints, e.g. GENDER = MASCULINE 

2. Variable constraints, e.g. GENDER = ?X 

As natural language is characterized by phenomena of agreement between words that are 
not close in the sentence, certain feature values can be transmitted from the governor 
to dependents and viceversa. The set of features that can be transmitted is defined a 
priori. It is then necessary to decide which information of the governor can be useful for 
an agreement check at a superior or inferior level. This information must be transmitted 
backward or forward in the dependency tree. 

Definition of agreement rules 

Let us consider a dictionary V. Let M be the set of morphological variables for the words 
of V. Every morphological variable z E M has values in a set Zi (E.g. if z = NUMBER 
then Zi = SINGULAR,PLURAL). 

Given a dependency rule DR 

an associated agreement rule RC is an ordered n+l-tuple 

where C Mi "is an agreement condition set referring to Xi and is defined in the following 
way: 

where V M j is an agreement condition. 
Agreement conditions are couples of the kind: 

VM· - (z A) J - , 

where: 

• z E M is a morphological variable (e.g. GENDER, NUMBER, etc.) 

• A can be either a variable (taking values in Z), or a subset of Z. (Z is the range of 
z). 

For example: the following couple dependency rule / agreement rule (DRI, RCI) 



www.manaraa.com

150 

DR1: 

AR1: 

4 The Understanding Algorithms 

VERB = ART ADJ NOUN * ART ADJ NOUN 

VERB: 
ART: 
ADJ: 
NOUN: 
ART: 
ADJ: 
NOUN: 

PERSON = 3, NUMBER = ?X 
NUMBER = ?X, GENDER = ?Y 
NUMBER = ?X, GENDER = ?Y 
NUMBER = ?X, GENDER = ?Y 
NUMBER = ?Z, GENDER = ?W 
NUMBER = ?Z, GENDER = ?W 
NUMBER = ?Z, GENDER = ?W 

allows the generation of the sentences of the kind of "Il grosso gatto caccia il piccolo topo" 
("The big cat chases the small mouse") but not sentences of the kind of "Il grossi gatta 
cacciano i piccola topi" ("The big cat chase the small mice") that would be accepted 
without the agreement constraints. In fact the agreement rule AR1 imposes the following 
agreement constraints: 

• number agreement among the governor (VERB) and the left dependents (ART, 
NOUN, ADJ); 

• gender agreement among the left dependents; 

• gender and number agreement among the right dependents. 

Notice that Italian is richer than English in variations due to gender, number, person, 
etc. In the above example all the words of the sentence (nouns, adjectives, articles, verb) 
are involved in morphological agreement. 

Morphological agreement checks 

The syntactic analysis based on the dependency rules makes use of the lexical categories 
associated with each word. For checking morphological agreement we have to consider 
morphological information (features). These features are: 

1. statically associated with dictionary words 

2. dynamically associated with every word W (having a governor role) involved in the 
syntactic analysis and transmitted forward to word W from its possible governor or 
transmitted backward to word W from its possible dependents. 

Morphological features statically associated to words 

The agreement mechanism is essentially based on the morphological information statically 
associated to dictionary words. To each word in the dictionary is associated a set of 
morphological features: 

Every feature imj is a couple 

imj = [Feature, Values] 



www.manaraa.com

4.3 Representation of Semantics 151 

made up by a morphological variable and by finite set of values for that variable. 
Each "value" represents a plausible value for the feature in question. For instance a 

word whose gender can be either MASCULINE or FEMININE can be characterized by: 
[GENDER = (MASC, FEM»). 

Agreement check modalities 

Let us consider the rule: 

A = B l , 

I I 
I I 
SA SBl 

dependency rule 

agreement rule 

The dependency rule can pass the agreement check if two kinds of checks succeed: 

1. Constant checks on the governor and on every dependent; 

2. Variable checks between every dependent Bk and the governor A. 

4.3 Representation of Semantics 

4.3.1 Introduction 

Semantic analysis is based on the use of caseframes represented as conceptual graphs [37). 
In a first phase a different organization had been used. The present approach is based on 
an automatic off-line compilation of dependency rules and conceptual graphs into knowl­
edge sources that satisfies the basic requirement of permitting an efficient control strategy. 
The use of conceptual graphs as a starting formalism to represent semantic knowledge 
about both words in the domain and internal meaning of utterances is presented. 

4.3.2 Word Information in the Dictionary 

A word in the dictionary can present two different kinds of ambiguity: 

1. Morphological ambiguity - A word can have more than one possible morphological 
class. For instance the Italian word abito can be either a noun or a verb (according 
to the English translations "suit" and "to live") 

2. Semantic ambiguity - A word can have different possible meanings. For instance the 
italian word cane can be either an animal (dog) or one part of a rifle (cock). The 
different meanings can refer to words with the same morphological category (as in 
this example) or not. 



www.manaraa.com

152 

Morphologlcal-class- 1 

Meaning 1 1 
Meaning m1 

WORD 

4 The Understanding Algorithms 

Morphologlcal-class- n 

Meaning ~ Meanlng::'n 

Figure 4.5: Hierarchical structure of lexical and semantic alternative word meanings 

The semantic knowledge in the dictionary is organized in the hierarchical way shown in 
Fig. 4.5. 

The semantic information associated with a word consists in a pointer to a conceptual 
graph representing the word "meaning" within the chosen domain. A referent is also 
present if the word represents some specific individual. If a word has more than one 
meaning in the domain, more than one conceptual graph pointer is inserted into the 
dictionary. 

4.3.3 Caseframes and Conceptual Graphs 

The central notion of caseframe is the the idea of a head concept, usually associated to 
a word, that is modified by a set of related concepts. Each of these modifiers plays a 
certain role (case) with respect to the head concept. Let us consider for instance the 
concept bagnare ("to wash"). Within natural language sentences such head concepts can 
be modified by cases. Among them: the agent of the action (AGNT), the object of the 
action (OBJ), the possible location (LOC), when the action takes (took) place (TIME), 
etc. The fillers of the cases are different concept types: the AGNT and OBJ should be 
generic entities having certain characteristics: the AGNT must be able to "wash" the 
object. Certain cases could be missing when uttering a sentence, like the TIME case. 

The formalism chosen to represent caseframes is the Conceptual Graphs (CG) for­
malism [37], modified in such a way to fulfill our needs. Conceptual graphs are bipartite 
oriented graphs with two types of nodes: concepts and relations. 

Concept nodes represent entities, actions or states that can be described in a natural 
language sentence. They correspond to intensional concepts that are connoted by words 
of the sentence. A concept is characterized by a Conceptual Type (Type in short) and 
by a referent (optional) that, if present, represents the element of the extension the node 
refers to. If the concept node represents a generic individual such a referent is missing. 
For instance an unspecified river can be represented by a node like [river] while the Tevere 



www.manaraa.com

4.3 Representation of Semantics 153 

is represented by [river:Tevere]. A specific river that has no name but that is not generic 
can be represented as [river:#234]. 

Conceptual relations connect the concept nodes. From the caseframes point of view 
they corresponds to the cases. 

A type hierarchy is defined over the conceptual .types. Such a· hierarchy is a partial 
order relation defined over the types. In the following, such relations will be represented 
by "<=" (less general than). Given that s, t are two types, if s <= t then s is a subtype 
of t while t is a supertype of s. Two operators, ca.lled minimal common supertype (mcs) 
and maximal common subtype (MCS), are defined over the types. Given two types tl 
and t2, if w = mcs(tl,t2), then tl <= w, t2 <= w and there is not a Type w1 different 
from w such that w1 <= w, tl <= w1, t2 <= wI. 

4.3.4 The use of Conceptual Graphs 

Conceptual graphs are used for two purposes: internal representation of the utterance 
meaning and semantic representation of the relevant concepts of the domain that can be 
connotated by the words in the dictionary. 

The internal representation of the utterance meaning, that has to be constructed in 
order to be able to extract the data required by the utterance, is obtained starting from the 
semantic representation of the words and of the domain concepts and using the syntactic 
knowledge that is required to correctly connect them. Let us consider the conceptual 
graphs that can be used to parse a sentence like "Dimmi Ie regioni bagnate dal Tevere" 
("Tell me the re~ons washed by the Tevere"). The graph for bagnare (to wash) is 

"[BAGNARE]-
(agnt) -) [FlUME] 
(obj) -) [REG lONE] ." 

This graph means that a river (fiume) can wash (bagnare) a region (regione). Obviously 
this is not the only meaning for bagnare, but the meanings that are not relevant inside the 
chosen domain are not taken into account. In this case there are other possible meanings 
for bagnare that are relevant for the domain: for instance a sea (mare) can wash a region 
or a province. That means that other conceptual graphs involving bagnare have to be 
defined to cover utterances like "Qua.li regioni sono bagnate dal mare Tirreno?" ("Which 
regions are washed by the Tirreno sea?"). To deal with the above mentioned meaning of 
bagnare, four conceptual graphs can be defined. Such graphs can be shortly represented 
in the following way: 

"[BAGNARE]­
(agnt) -) [FIUME+MARE] 
(obj) -) [REGlONE+PROVlNClA]." 

Here the symbol "+", when encountered by the conceptual graph compiler, whose goal 
is to automatically generate the KSs, causes the generation of the types fiume+mare and 
regione+provincia together with the related hierarchical relations: 



www.manaraa.com

154 4 The Understanding Algorithms 

, 'FIUHE+MARE I I > "FIUHEI I 

, 'KAREl I "FIUHE+HAREII > 
"REGIONE+PROVINCIAII > 
"REGIONE+PROVINCIAII > 

, 'REGIONEII 
, 'PROVINCIA I I 

Such implicit hierarchical relations are added to the type hierarchy defined by the person 
in charge of defining the system knowledge bases. The algorithms deal directly with 
implicit types (lists of user defined types). An alternative way is to define a minimal 
common supertype for fiume (river) and mare (sea) as a "washing entity" .and a similar 
procedure for regione (region) and provincia (province). 

Conceptual graphs are also be used to represent the sudace semantics of utterances. 
With the term surface semantics we intend to point out that only the superficial semantic 
structure of the utterance is represented. For certain domains such a representation is 
sufficient to perform the activities expressed by the utterance, but for others a mapping 
activity is required to map the superficial structures into deep semantic structures that 
do not depend on the structure of the utterance. 

4.3.5 Representation of the Utterance Meaning 

As anticipated above, the utterance meaning is represented by making use of conceptual 
graphs; more precisely, the utterance meaning results from the join. of the conceptual 
graphs that are associated with the meaningful words in the utterance. The meaning 
representation for the sentence: 

Quali province della Campania confinano con Ie regioni bagnate dal Tevere'l 

(Which provinces of Campania border on the regions washed by the Tevere 'I) 

should be: 

"(CONFINARE]-
(agnt) -> [PROVINCIA:?x]-

(part-of) -> [REGIONE:Campania] 
(with) -> [REGIONE] 

(obj) (- [BAGNARE] , 
(agnt) -> [FIUHE:Tevere].11 

To be more precise this conceptual graph is called abstraction, due to the presence of 
a parameter (?x), called a formal parameter; in fact all conceptual graphs containing 
parameters are called abstractions. Abstractions are equivalent to Lambda-expressions. 
The denotation of an abstraction containing a parameter is the set of all the constants that 
when substituted for the formal parameter make the Lambda-expression (corresponding 
to the abstraction) true. In the example the denotation of the abstraction is exactly what 
we are looking for, i.e. the provinces that: 



www.manaraa.com

4.4 The Compiler of Conceptual Graphs and Dependency Rules 155 

• are part of a region having name Campania, 

• border on a certain region Rl, 

• and region Rl is washed by a river having the name Tevere. 

Such a representation can be transformed into a set of conjunctive clauses that can be 
used to access the data in order to provide the answer. 

From the practical point of view, it is sometimes necessary to postprocess the repre­
sentation during the answer generation process in order to give a natuallanguage answer 
tailored as far as possible to the utterance structure, and that could also require keeping 
track of some morphological features of the words in the utte~ance. 

4.4 The Compiler of Conceptual Graphs and Dependency 
Rules 

4.4.1 Introduction 

This section discusses the integration of conceptual graphs with dependency rules. This 
discussion illustrates also the mapping information that has to be provided to allow such 
integration. The compilation process that generates suitable structures starting from 
these representations is outlined. 

4.4.2 The Use of Dependency Rules 

Dependency grammars have been selected as a formalism for representing syntactic knowl­
edge for the following two main reasons: 

• Dependency rules allow an easy integration of syntactic knowledge with caseframes 
thanks to the similar notion of governor for the dependency rules and of header for 
the caseframes. 

• Each dependency rule requires the presence of a word with the governor role in order 
to be activated. Consequently all the nodes of the resulting parsing tree correspond 
directly to a word. That allows the creation of expectations at the highest levels in 
the parsing tree and that is a basic requirement of our parsing strategy. 

Let us consider as an example for the whole section the sentence 

Quali province della Campania confinano con Ie regioni bagnate dal Tevere? 

(Which provinces of Campania border on the regions washed by the Tevere?) 

The dependency tree that corresponds to the example is depicted in Fig. 4.6. The 'corre­
sponding dependency rules used to produce this dependency tree are: 

rsi) verb = noun * noun 
rs2) noun adj * pr_noun. 
rs3) pr_noun = prep * 
rs4) noun = prep art * verb 
rs5) verb = * pr_noun 



www.manaraa.com

156 4 The Understanding Algorithms 

CONFINANO (verb) 

PROVINCE (noun) REGIONI (noun) 

~ //~ 
QUALI (ad)) CAMPANIA (pr-noun) 

/ 
CON LE (art) BAGNATE (verb) 

(prep) ~ 

DELLA (prep) 
TEVERE (pr-noun) 

/ 
DAL (prep) 

Figure 4.6: Dependency tree for the example sentence 

where the symbol * represents the governor position. The associated rules for morpho­
logical agreement check are not reported for simplicity; note that rule rs4) requires a verb 
characterized by features TENSE = PAST, MODE = PARTICIPLE and others. 

4.4.3 Integrating Conceptual Graphs and Dependency Rules 
- the Mapping Knowledge 

The basic idea is to generate off-line, starting from dependency rules and conceptual 
graphs, structures (called briefly knowledge sources, KSs) suitable to allow an efficient 
(for speech) parsing strategy. Particularly, the probabilistic control of the search and the 
consequent integration of top-down and bottom-up activity is required. 

Dependency rules are the starting point of the compiling activity. The question is: 
given a dependency rule and the whole set of conceptual graphs representing the domain 
knowledge, is it possible to create one or more KSs that take into account all the possible 
interactions of the rule with semantic knowledge? 

A basic point is that the partition of knowledge between the KSs is based on locality, 
i.e. each partition is aimed to generate a certain class of constituents, not to contain a pre­
defined kind of knowledge (like a partition for syntax and a partition for semantics). Then 
each KS must combine the time adjacency knowledge, the syntactic and morphological 
knowledge, and finally the semantic knowledge that is necessary to handle specific classes 
of sentence segments. Then, in simple words, given a dependency rule it is necessary 
to generate KSs able to deal (both syntactically and semantically) with those sentence 
segments that require that dependency rule. 

A first simple example will be considered to clarify this idea. Let us consider the 
dependency rule: 



www.manaraa.com

4.4 The Compiler of Conceptual Graphs and Dependency Rules 157 

rs1) verb noun * noun 

(the morphologic agreement conditions are not reported here) and the conceptual graph, 
whose meaning is that a province can border on a region: 

cg1) "[CONFINARE]­
(agnt) 
(loc) 

-> [PROVINCIA] 
-> [REGIONE] ." 

These two structures (rsl and cgl) together, through the integration activity, could lead 
to a compositional structure of the kind: 

CONFINARE = PROVINCIA <header> REGIONE 

but for this purpose it is necessary to know that the agent ("agnt" of the action corre­
sponds to the left dependent of syntactic rule rsl and that the "loc" case corresponds to 
the right dependent of rsl. 

Then there is the necessity of having additional knowledge, called "mapping" informa­
tion, that allows the correct association of semantic types to the governors and dependents 
of the dependency rules. 

For this purpose, each dependency rule is augmented with information about gram­
matical relations [8J. A grammatical relation is associated with each dependent Di, ac­
counting for the grammatical relation existing between the governor G and the constituent 
having Di as a governor. 

In the example the associated grammatical relations could be subject for the left 
dependent and object for the right dependent. In addition, grammatical relations are 
associated with the governor G too, accounting for the admissible grammatical relations 
that can involve (in the dependent condition) the constituents having G as a governor. In 
the example, governor G can be the governor of an utterance, i.e. it does not usually play 
the dependent role; this fact is expressed using the special virtual grammatical relation 
sent that could be imagined to depart from the header of a complete sentence. After this 
augmentation, dependency rule (rsl) looks like: 

rs1) verb 
(sent) 

noun * 
(1 subject) 

noun 
(1 object) 

The meaning of the two ones in front of the grammatical relations will be explained 
in a moment. Now the mapping knowledge associates one or more conceptual relations to 
each grammatical relation, together with their directions. In the case of the example the 
mapping knowledge is: 

subject --> agnt+ 
object --> loc-

The augmentation of the dependency rule (rsl) together with this association is some­
times called mapping rule. 



www.manaraa.com

158 4 The Understanding Algorithms 

In the mapping the "+" or "-" sign at the end of a name represents the plausible 
direction of the conceptual relations, A "+" sign means that the conceptual relation 
is leaving the concept associated to the governor to enter the concept associated to the 
dependent while a "-" sign means that it has the opposite direction, So the governor of 
the dependency rule has to be associated with the header of the conceptual graph (cgl) 
(confinare) and not to one of the dependents, In the example all the relations must leave 
the node that corresponds to the governor, 

Syntactic rule (rsl) is also characterized by the fact that the two dependents must 
both be part of the same conceptual graph, This fact results from two numerical labels 
"I" at the beginning of each list; they state that both dependents must be part of the 
same graph, That is not always the case, as we will see in a second example, 

4.4.4 Combining Different Conceptual Graphs 

Given a dependency rule it is necessary to examine all the conceptual graphs of the domain 
in order to consider all those that can satisfy the requirements expressed by the mapping 
rule associated with that dependency rule, 

For efficiency reasons it is not desirable to have a KS for each (set of) conceptual graphs 
that can correspond to the selected dependency rule, So many (set of) conceptual graphs 
can be grouped together to generate a single KS, and consequently a single compositional 
structure, This result is obtained by making use of explicit supertypes or of implicit 
supertypes (through the use of the "+" operator), Consider for example the case of two 
conceptual graphs: 

"[PROVINCIA+FIUME+LAGO]­
(part-of) -> [REGIONE] ," 

" [ISOLA]-
(part-of) -> [MARE] ," 

They state that a province is part of a region and that an island is a part of a sea, Consider 
a syntactic rule and a mapping rule like: 

rs2) noun art * noun 
(subject, object) (attr) 

attr --> part-of+ 

(This rule deals with sentence segments like" .. , the lakes of the regions [that] .. ," .. 
The resulting compositional structure could be: 

ISOLA+PROVINCIA+FIUME+LAGO = J <header> MARE+REGIONE 



www.manaraa.com

4.4 The Compiler of Conceptual Graphs and Dependency Rules 159 

This compositional structure does not provide sufficient constraints to semantic analysis: 
in fact it is not possible for a province to be part of a sea (at least not directly in questions). 
To overcome this kind of problem each KS is augmented with the whole list of conceptual 
graphs that took place in the generation of the compositional structure. This list of graphs 
is internally represented through suitable structures that are used at run time during the 
propagation of semantic contraints. 

4.4.5 A More Complete Example 

It is necessary to explain that the governor does not need to correspond to the header of 
conceptual graphs; in the case of the previous example the header does correspond to the 
governor but this is not always the case; this new example describes this situation. Now 
let us consider the syntactic rule: 

rs2) noun = prep art * verb 

characterized by the following restrictions on morphological features (now they are essen­
tial to explain the example): 

NOUN: 
PREP: 
ART: 
VERB: 

gen = 1Xi num = 1y; 
type = simple; 
gen = 1x; num = 1y 
mode = partic.; tense = past; gen = 1x; num = 1y; 

and the conceptual graph saying that rivers wash regions: 

"[BAGNARE]-
(agnt) -) [FlUME] 
(obj) -) [REGlONE]." 

The above mentioned dependency rule takes into account sentence segments like: " ... con 
Ie regioni bagnate dal Tevere" (" ... with the regions washed by Tevere" .. Now these two 
structures together should lead, through integration, to a compositional structure like: 

REGIONE = <header> BAGNARE 

and the mapping rule could be: 

noun 
(object) 

= prep art 

agnt-compl --) obj-
object --) loc 

* verb 
(agnt-compl) 



www.manaraa.com

160 4 The Understanding Algorithms 

This rule states that in the case of a syntactic structure of a noun modified by a relative 
clause, the relative clause could be the object ("obj") as in the example. Now the relation 
is exiting from the concept corresponding to the dependent and coming into the concept 
corresponding to the governor. 
The restrictions imposed on the verb features by the dependency rule are essential. In 
fact, in the case of a relative clause having finite mode (like indicative mode and present 
tense), the conceptual relation involved could be "agnt", as in sentence segments like: " ... 
con i fiumi che bagnano ... " (" ... with the rivers that wash ... "). 

The relation "loc" that results on the left side of the mapping rule represents one of 
the possible semantic relations that the sentence segment treated by the rule can have 
with respect to a higher level constituent. The relations on the left side are simply used 
during the parsing process to check that only admissible connections are performed. When 
the sentence segment "con Ie regioni bagnate dal Tevere" is generated only the semantic 
relations on the left of the mapping rule ("loc" in our case) are permitted to be used to 
connect this segment to another possible supersegment, like our sentence. 

4.5 Parsing - Conceptual Level 

4.5.1 Introduction 

The input structure of the understanding level is a lattice of word hypotheses, i.e. a set 
of hypotheses about words characterized by the following information: 

1. Hypothesized word, 

2. Time interval of the word instance, 

3. Score. 

Two are the objectives of the understanding process: to complete the recognition activity 
and to understand the meaning of the utterance. 

From one side the understanding level must complete the recognition process. It has 
to detect a sequence of word hypotheses in the lattice such that the following requirements 
are satisfied: 

1. The word sequence must be both syntactically and semantically correct, i.e., more 
precisely, it must be compatible with the system knowledge about the language and 
about the application domain. 

2. The word hypotheses of the sequence should cover exactly the time interval of the 
uttered sentence. Ideally, they should not overlap and no gaps among them should 
exist. From a practical point of view, due to uncertainties in word spotting, a 
certain number of overlaps and gaps between adjacent word hypotheses normally 
exist and must be considered. Thresholds can be used to define the accepted level 
of imprecision. 

3. Among all the sequences of word hypotheses that satisfy points 1 and 2, the sequence 
with the best word hypotheses (the word hypotheses with the best scores) should 
be preferred. For this purpose a score can be assigned to a solution starting from 
the scores of the word hypotheses involved. 



www.manaraa.com

4.5 Parsing - Conceptual Level 161 

From the other side the system has to understand the meaning (in the fixed domain) of 
such word sequence, that is, to generate a formal representation of the meaning itself. 
From that representation the system will be able to perform the activity requested by the 
utterance (in our case the extraction of the desired information from a data base). 

Both objectives imply the use of syntactic and semantic knowledge. For the first 
objective (to complete recognition), that knowledge is used as a source of constraints to 
solve the uncertainties that still remain after the recognition level has used phonetic and 
acoustic knowledge to perform the first part of the recognition activity. For the second 
objective, syntactic and semantic knowledge is used to generate the meaning of a word 
sequence in the same way used by natural language interfaces. Within natural language 
interfaces syntactic and semantic knowledge has to be "expressed in a declarative way; in 
addition the process that uses that knowledge is usually non-deterministic (i.e. a search 
activity is required). 

Our aim is to perform these two activities in an integrated way: only one declarative 
representation of syntactic and semantic knowledge is given to the system and it is used 
for both objectives; in addition the two activities are completely merged. 

4.5.2 Lexical Component and Model Component 

The "solution", that is, the sequence of word hypotheses that has to be selected as the 
correct one, must satisfy constraints of many different kinds. These constraints express 
two different types of knowledge. FirstJ there is the knowledge that refers to the word 
hypotheses by themselves: time interval and score. This kind of knowledge is used to verify 
the conditions outlined by previous points 2 and 3 {i.e. to have a temporally acceptable 
solution with the best overall score}. Second, there is the knowledge about the language 
and the application domain. This knowledge is used to satisfy the conditions requested 
by point 1 (i.e. to guarantee the syntactic and semantic correctness of the solution). 

We refer to these two kinds of knowledge as the lexical component and the model 
component respectively. The two components must cooperate, and indeed the system 
uses them in a joint way. Notwithstanding this, we believe that it is reasonable to keep a 
clear distinction between them, at least for descriptive purposes. In fact, not only different 
techniques are employed in order to exploit the different constraints pertaining to the two 
components, but they have different goals. The task of the lexical component would be 
to put together word hypotheses into "chunks" so that time constraints are satisfied, and 
its ultimate goal is to reach a solution having a good score without having to combine 
too many word hypotheses. It is not per se concerned with the problem of checking the 
syntactic and semantic correctness of the chunks it is getting through. Conversely, the 
goal of the model component is to put together word hypotheses according to a model 
of the language and of the application domain, until a syntactically and semantically 
acceptable solution is found. 

The correct sequence of word hypotheses has to satisfy the constraints pertaining to 
both components, and they can play different roles in different approaches to the problem. 
In the next section the importance of using scores to guide the search is outlined. 



www.manaraa.com

162 4 The Understanding Algorithms 

4.5.3 Importance of a Score Guided Search 

When the lattice generated by the recognition level contains many word hypotheses (of 
the order of a hundred times the number of actually uttered words) and when the model 
of the language and application domain are not limited to toy examples, then the analysis 
techniques have to use the scores associated with the word hypotheses to guide the search. 
In other words it is not possible to have an analysis mechanism that tries first to recognize 
all of the possible sequences of word hypotheses (i.e. that satisfy all the constraints) and 
that afterwards considers their scores for the selection of the best sequence. In fact the 
amount of search that would be necessary to detect all of the possible sequences of word 
hypotheses is extremely high, since the non-determinism of syntactic/semantic knowledge 
is added to input uncertainty: the presence of many word hypotheses instead of a few 
words. 

The search has to be directed towards the best sequences from the very beginning, 
and only a small part of the implicit search space should be examined. The search should 
then start from the best word hypotheses, should be directed by the scores of the word 
hypothesis sequences and should stop when an acceptable solution has been detected (i.e 
the probability of finding better solutions by continuing the analysis is sufficiently low). 
Starting from this assumption, many different approaches to the problem are still possible. 

4.5.4 Search from the Point of View of the Lexical Component 

From the point of view of the lexical component, the main objective of the analysis is 
to start from the best word hypotheses and to expand them with other word hypotheses 
until an agglomerate covering exactly the whole utterance time interval is generated. New 
agglomerates can be obtained either by adding new word hypotheses to old agglomerates 
or by joining together old agglomerates. As a special case an agglomerate can be a 
sequence of adjacent word hypotheses (the term adjacent is used taking the gaps and 
overlapping thresholds into account) but in general word hypotheses do not need to be 
adjacent. 

Each agglomerate is characterized by a quality factor. A quality factor is assigned 
starting from the scores and time intervals of the word hypotheses making up the agglom­
erate. The quality factor constitutes an evaluation of the probability that the set of word 
hypotheses is actually present in the uttered sentence. Details of the ways this quality 
factor can be obtained are not included in this section. 

Control strategy of the lexical component 

The basic control cycle consists in selecting the best agglomerate (the term "agglomerate" 
includes a single word hypothesis as a special case) and processing it to generate new 
agglomerates. Only the agglomerate with the best quality factor is selected at every 
control cycle. The selected agglomerate can generate new agglomerates either by having 
a new word hypothesis added to it or by being joined with other agglomerates. A quality 
factor is then assigned to them and the control cycle is repeated. 

What is really done starting from the selected agglomerate depends on the search 
performed at the model component. In fact the selected agglomerate can only be expanded 
in a way consistent with the syntactic and semantic knowledge of the model level. Note 



www.manaraa.com

4.5 Parsing - Conceptual Level 163 

that at the beginning there are only word hypotheses: a special case of agglomerates. 
Section 4.5.10 will illustrate the control strategy of SUSY. 

4.5.5 Relations with the Model Component 

If the lexical component takes control of the parsing process in this way, there would be the 
problem of validating the agglomerates from the point of view of the model component: if 
an agglomerate does not satisfy syntactic and semantic constraints it has to be eliminated 
(or still better, it should not be constructed). 

A selected Island is expanded in all the possible ways to find adjacent (on the left 
or on the right) word hypotheses and the model component is used to validate them. In 
other words, the phrase hypotheses generation follows left or right expansion and there is 
no attempt to follow the model: time adjacency is guiding the search, not grammar rules. 

The verification of an agglomerate of word hypotheses requires inferences at the model 
level, and efficiency considerations suggest the use of model knowledge to decide which 
agglomerates are worthwhile trying to generate (use of syntactic/semantic predictions). 
In SUSY the model component does not have a slave role, i.e. it is not used just to 
verify the correctness of the agglomerates that are going to be generated on grounds of 
time adjacency. Instead it has a key role in deciding the direction of expansion of an 
agglomerate and can override the time adjacency criterion, leading to the presence of 
"holes" within an agglomerate (i.e. an agglomerate is not necessarily a sequence of words, 
so agglomerates are not like Islands in [42]). 

To be consistent as far as possible with the lexical component point of view it is 
necessary for the model component to be able to generate internal structures (complete 
and incomplete constituents) that can be associated with agglomerates (i.e. set of word 
hypotheses). Such internal structures, completely validated by both the components, have 
a quality factor (the quality factor of the agglomerate) and a precise syntactic/semantic 
characterization. They are called phrase hypotheses in the following, until a more precise 
definition is given in Sect. 4.5.8. The quality factor of a phrase hypothesis (as well as the 
score of a word hypothesis) will be taken into account by a control strategy derived from 
a refinement of the "naive" control strategy of the lexical component. 

4.5.6 Relations with some Former Systems 

Our main effort has been to adapt the basic ideas of chart parsing to the peculiarities of 
continuous speech: mainly the large search space involved. The system that has given us 
some good ideas about an effective and efficient way of controlling the search was HWIM. 
The final system is very different from it, expecially when the representation and use of 
syntactic knowledge is concerned, but nevertheless it does share a few commonalities. 

An idea shared with HWIM and other systems is that constraints pertaining to the 
two components have to be used in a joint way during the analysis. Another common 
point is the conceptual idea that a solution can be obtained by formulating hypotheses, 
each of them validated by the presence of a set of word hypotheses satisfying all the 
possible constraints (to be more precise, that there are no evidence of constraints not 
satisfied). Hypotheses can be expanded, two hypotheses can be joined together, etc., 



www.manaraa.com

164 4 The Understanding Algorithms 

until a hypothesis is based on word hypotheses covering the time interval of the whole 
utterance. 

The HWIM system considers central the role of the lexical component to formulate 
hypotheses, while the model component is mainly used in a passive way to check the cor­
rectness of these hypotheses. In SUSY, phrase hypotheses are formulated on the grounds 
of linguistic knowledge; the time intervals of the word hypotheses are still checked every 
time a new word hypothesis becomes part of a phrase hypothesis but time intervals do 
not guide the search. In this respect, our approach shows some similarities with Hearsay's 
[10], though, unlike Hearsay, we stress the importance of a formal control as a means to 
cut down 'the search and to avoid the generation of incorrect solutions. 

Another significant difference between our system and HWIM concerns the structure 
of the phrase hypotheses. HWIM always expands a phrase hypothesis either on the left 
or on the right, then the result is that hypotheses are "islands", i.e. sequences of adjacent 
words. In SUSY the word hypotheses supporting the phrase hypotheses are not necessarily 
adjacent. 

4.5.7 The Model Component 

We have seen that syntactic and semantic knowledge is represented, after the compilation 
phase, by knowledge sources (KSs). Now let us see the knowledge sources at the lowest 
level of detail, at what is necessary to describe the control strategy in a precise way. Each 
KS is characterized by a number of slots: one of them is called the header and has to 
be filled by a suitable word while the others are called filler slots and have to be filled 
either by words or by phrase hypotheses provided by other KSs. A slot of a KS is called 
terminal if it has to be filled by a word, while it is called non-terminal if it has to be filled 
by the results provided by other KSs. Then the header slot is terminal while the filler slots 
can be either terminal or non-terminal. The parsing process consists in the generation of 
phrase hypotheses that result from the activity of filling the slots of the KSs. 

A simplified view: the problem solving paradigm 

Just for generality and for the sake of simplifying the control strategy description, we are 
going to describe the parsing process as a problem solving task: the problem P of filling 
completely a KS (i.e. of generating a phrase hypothesis by such KS) can be decomposed 
into the subproblem P* of filling the header slot and into the subproblems P1, ... , Pn of 
filling the filler slots, if any. 

This fact can be written as: P := Ph, P1, ... , Pn. 
Of course, for what we have seen, the subproblems are not at all independent one 

from the others: constraints of morphological, syntactic and semantic nature need to be 
propagated and controlled each time a subproblem has to be solved. In addition temporal 
constraints have also to be propagated and verified because header and filler slots must 
follow the pattern of adjacency of the KS. 

Thanks to this generalization, the abstract description of the control strategy we are 
going to describe can be applied not only to spech but also to other signal understanding 
fields (like sonar, vision, etc.). As the constraint propagation and control techniques are 
specific to the application field (speech, vision, ... ) we will describe the control strategy 



www.manaraa.com

4.5 Parsing - Conceptual Level 165 

without taking them into account here: in other words the description is simplified as far 
as possible to make it clearer. 

The knowledge source partition 

From now on the problem solving structure of a KS is abstractly represented in the form: 
1) C := Cl, C2, .... , Cn. 
where the meaning is: in order to classify a certain word sequence as being of class C 

(the class of constituents detected by the KS) it is necessary to classify n word sequences 
as being of class Cl, C2, ... , Cn. Some of such sequences will be constituted by just 
one word (header or terminal fillers) while others will have to be classified by other KSs 
(which have their own problem-solving structure). 

Now it is necessary to spend a few words about what the Ci classes are. When.a 
KS wants to fill one of its non-terminal filler slots, it is necessary to activate some other 
KSs (or even itself, recursively). Which other KSs have to be involved in this task? The 
answer to this question requires a static (off-line) partition of the KSs into classes. Such 
a partition takes into account both syntactic and semantic knowledge and is performed 
off-line by putting into the same class those KSs that contribute to detecting similar 
constituents. Coming back to the symbols in 1), they refer to two types of classes: one 
type, called a terminal symbol is used to indicate terminal problems, i.e. sets of words that 
can solve the subproblem, like the subproblem of filling the header slot. The other type, 
called non-terminal symbol corresponds to the classes of the previously mentioned KS 
partition. While terminal symbols can be matched directly against the word hypotheses, 
the non-terminal symbols require the KS activity. 

As far as the second type is concerned, what it is really relevant here is that: 

1. Given a class Ci it is possible to know which KSs are of that class, i.e. can classify 
word sequences as members of the class. 

2. Given a class Ci it is possible to know which KSs have non-terminal fillers slots of 
that class, i.e. can use a word sequence of class Ci to fill one of their non-terminal 
filler slots. 

Knowledge sources, facts and goals 

This aspect corresponds more or less to the forward and backward control activity in a 
problem solving system. 

We use the term fact to indicate an instance of a KS whose slots have been completely 
filled. Every fact has an associated symbol (class): in the simplified view the only way to 
obtain a fact of class C is to apply a KS of class C. 

A KS is called terminal if it has only terminal slots: it relies only on terminal symbols. 
A terminal KS can be applied considering only the word hypotheses. In our case a KS 
contains at least one terminal symbol: the symbol C* that represents the header slot. 
Non-terminal KSs rely at least on a non terminal symbol; C* is the most important 
concept while the others act as modifiers. 

If KSs are only applied forward, then only facts are generated during the search 
activity. But if they also run backwards, then goals have to be dealt with too. In 



www.manaraa.com

166 4 The Understanding Algorithms 

our approach the presence of a "best first" search that considers the scores of the word 
hypotheses requires the presence of both search strategies and a complete step-by-step 
integration among them. By now for goal of class C we mean simply the objective of 
finding out one (or more) facts of class C. A goal can then be represented by a complete 
description of the constraints that those facts have to satisfy. The next section will define 
the deduction instances (DIs) and their use as basic items for the control of the search 
activity. The definition of DIs is necessary in order to better understand the relations 
among goals and facts and their roles in a real best first search. 

4.5.8 Deduction Instances 

We have seen that the activity of finding a solution can be viewed as a search process. 
The part of the implicit search space that is being incrementally explicited could then be 
represented as an OR tree of nodes. These nodes are called Deduction Instances (DIs). 
Each node represents an intermediate step of a deductive process possibly leading to a 
solution. Each DI can be represented by an AND tree, called a deduction tree, whose 
nodes can be facts or subgoals. A deduction tree corresponds roughly to a parse tree in 
the case of speech; more precisely a parse tree corresponds to a DI which is a fact. In the 
case of a goal DI the parse tree has some parts missing. 

In a classical goal-driven search the steps involved are decomposition of a goal into 
subgoals and verification of a terminal subgoal against the input data. In the case of a 
data-driven search, input data can be grouped together to form deduced facts, deduced 
facts are also be grouped together to form new deduced facts and so on until a solution 
is possibly reached. 

Let us consider the case of a single deductive process that led to a solution. If a single 
strategy (data-driven or goal-driven) is used, then, starting from an initial state, the final 
state (solution) has been reached through a single path of states (DIs). In our approach 
the need of a best first search requires goal-driven steps to be mixed with data-driven 
steps. To allow such integration among data-driven and goal-driven activities, special 
operators (called merging operators) are able to join two different paths together. In 
other words two DIs can be merged to form a new DI. 

Deduction instances are the basic items managed by the control strategy and concep­
tually constitute the Deduction Instances Data Base (DIDB). DIs can be grouped into 
two classes: fact DIs and goal DIs. Fact DIs represent facts of a certain class (according 
to the definition of Sect. 4.5.7) while goal DIs are characterized by at least one still un­
solved subgoal. One of the subgoals of a goal DI has to be defined as a Current Subgoal 
(CS) when such a goal DI is inserted into the DIDB. A goal DI does not represent simply 
a subgoal (the current one) but a subgoal together with its context from which linguis­
tic constraints are obtained through constraints propagation activity. In other words a 
DI represents the whole deductive process leading to the current situation, not only the 
description of a certain subgoal to be solved. 

It is important to operate on DIs and not simply on facts and subgoals for the following 
reasons: 

1. The best first search requires a single state to be characterized by a priority in 
order to decide, at each control cycle, what state has to be treated first (we are 



www.manaraa.com

4.5 Parsing - Conceptual Level 167 

not interested here in what operator has to be applied first). Such priority should 
not be based on heuristics but has to be the result of a domain-dependent function 
applied to the word hypotheses that have supported the deductive process until now. 
In other words each DI must correspond directly to an agglomerate (as introduced 
in Sect. 4.5.4) and its quality factor can be used to perform the best first search 
previously described. 

2. The use of DIs makes simpler and more formalized the integrated search strategy: 
two DIs can be merged to generate a new DI. 

3. Constraint propagation activities during the deduction makes every DI extremely 
specific: subgoals of the same class get different constraints when inserted in different 
contexts. 

We have seen that constraints coming from both the lexical and model components 
are exploited during search. Then the only agglomerates that are generated are those 
containing the word hypotheses on which a fact DI relies on or those that currently 
support a goal DI. 

The presence of a 1:1 relation between DIs and agglomerates allows the kind of control 
strategy previously outlined in Sect. 4.5.4 to be applied directly on the DIs: at each control 
cycle the best DI (the DI with the best quality factor, i.e. the DI that corresponds to the 
agglomerate with the best quality factor) is selected and the operators are applied on it 
to generate new DIs. 

4.5.9 Activation: Scores and Quality Factors 

Before illustrating the control strategy in a formal way it is necessary to better discuss 
some conceptual points about the creation of expectations. A problem that the control 
strategy has to deal with is the decision whether to continue to deal with a given DI or 
to decide to try to generate new DIs starting from a certain new word hypothesis. 

As each DI is supported by a given agglomerate and has a given quality factor, a 
reasonable solution is to compare the quality factor of the best DI with the score of the 
best (remaining) word hypothesis. To do that, the quality factor of a DI and the score of a 
word hypothesis need to be comparable. In SUSY they are, as we use the density method 
of combining together the scores of the word hypotheses of the agglomerate supporting 
the DI. 

Let us call Sl, S2, ... , Sn the scores of the word hypotheses and tl, t2, ... , tn their 
time intervals. Then the quality factor of a DI supported by an agglomerate of such word 
hypotheses will be: 

QF = (Sl*tl + ... + Sn*tn) / (tl + ... + tn) 
This formula shows that, if all the WHs had the same time interval, the quality factor 

would have been just the mean value of their scores: QF = (Sl + ... + Sn) / n. 
Given the possibility of comparing scores and quality factors, our solution is to start 

a new deductive process when the score of the best remaining hypothesis in the lattice 
is better than the quality factor of the best DI produced so far. Some systems select 
just a certain number of word hypotheses as "seeds" to be used to create Islands; the 
critical aspect is that the optimal number cannot be calculated in advance as it depends 



www.manaraa.com

168 4 The Understanding Algorithms 

on the single utterance. We experimented with this strategy initially, but experiments 
performed by changing the number of word hypotheses activated during the initial phase 
showed that this approach was not really efficient. 

This intermixed procedure, as far as we know, is original and has the great advantage 
of solving a common problem: while the word hypotheses involved in the solution have, 
together, an acceptable quality factor (the quality factor of the solution), there could be 
just one or two uttered words that have a bad score, due, for instance, to mispronunciation, 
reduced length, enviromental noise, or to a more critical acoustic model for word(s). 
The reasons why this procedure, together with the other specific features of the control 
strategy, can solve the above mentioned problem will be clear later on: we try now just to 
give an informal justification. The word hypotheses in the lattice can be classified into two 
sets: those that are used to create expectations, i.e. to generate new deductive processes, 
and those that are not. By now it is sufficient to anticipate that, under certain conditions 
that will be only partially fulfilled, the first set is composed of those word hypotheses that 
have a score better than the solution quality factor, while those of the second set have a 
score worse than the solution quality factor. 

The informal conclusion is that what is really good (word hypotheses in the first set) 
is used incrementally as "seeds" to generate new deductive processes, while the "garbage" 
is only used during the deductive processes to expand the DIs. The process of selecting 
a certain word hypothesis to start a new deductive process is called activation. The next 
subsection describes such phase. 

The ACTIVATION operator 

The first question is: what does it mean to begin a new deductive process starting from a 
word hypothesis and how is it possible to do that? We can think of an activation operator 
that, starting from the word hypothesis, can generate a set of DIs. Given our KSs, the 
activation of a word hypothesis means to trigger all the KSs that have a header slot that 
can be filled by such word hypothesis and then to generate for each such KS a new DI, 
where the header slot is filled with the word hypothesis (i.e. the DI is supported by the 
word hypothesis). What it is really important, in our opionion, for a continuous speech 
understanding system, is to allow such possibility: it is for this reason that a header based 
knowledge representation formalism has been selected. 

Let us see now the activation phase using the problem solving paradigm. Every word 
hypothesis is characterized by a set of features. The activation operator, using the values 
of these features, can know what terminal symbols correspond to this word hypothesis. 
KSs with terminal slots corresponding to these terminal symbols are then activated and 
fact or goal DIs are generated. Each DI is characterized by'having that terminal subgoal 
satisfied, i.e. the terminal slot filled. If the KS has only one terminal slot, then a fact DI 
is generated, otherwise a goal DI is generated. 

Note that in our current implementation no pure goal DIs are allowed; that means 
that goal DIs have to be supported by at least one word hypothesis. This decision is due 
to two main reasons: 

1. A pure goal DI is not supported by any word hypothesis, so it is not possible to 
assign quality factors to this kind of DIs, and no best first search can really be 
performed. 



www.manaraa.com

4.5 Parsing - Conceptual Level 169 

WH 01 / YES 

SOLUTION LIST / ,SOLUTION 

NO 

0 CURRENT 01 

I ACTIVATION I I DEDUCTION SCHEDULER I OPERATORS SELECTION 
& APPLICATION 

I ~ - -

rn 
-

C! 
Z 

( ) ( WHDB " 
~ ::J III 

g C! 
DIDB (LATIICE)j a: II: 

III C! III 

> CD· ~ 

f 
:::l 
III 

"---- --- ~ 

I QUALITY FACTOR I NEW 01. 

COMPUTATION 

11 FACT Dis 

GOAL 01. 

SUB GOAL SELECTION 
& 

CONSTRAINT PROPAGATION 

I 
Figure 4.7: Architecture of the score-guided control strategy (DIDB 
stances Data Base; WHDB = Word Hypotheses Data Base). 

Deduction In-

2. KSs are characterized by the header presence and the problem of finding the header 
is a terminal problem. In our implementation, when a goal is decomposed into 
subgoals by applying a rule, then the terminal subgoal corresponding to the header 
has to be solved before other subgols of that DI can be treated. 

4.5.10 Control Strategy 

The control of the deductive activity is carried out by a deduction scheduler (DS, see Fig. 
4.7). At each control cycle the deduction scheduler looks into the deduction instances 
data base (DIDB) and into the word hypotheses data base (WHDB). 

At the beginning no DIs exist in the DIDB, so they are generated starting from the 
best word hypothesis through the application of the activation operator. 

At each control cycle the quality factor of the best DI contained in the DIDB is 
compared with the score of the best word hypothesis contained in the WHDB (lattice in 
the case of speech). The best item between these two is selected. 

If the deduction scheduler selects a word hypothesis, the activation phase takes place, 
generating new DIs that will be inserted into the DIDB. Otherwise, if a DI is selected, the 



www.manaraa.com

170 4 The Understanding Algorithms 

deduction phase takes place. Five different activities are performed during the deduction 
phase. The activities are: 

1. Solution test: If the DI constitutes an acceptable solution it is stored in a solution 
list. If the strategy is optimal the analysis can terminate. Otherwise the analysis 
can go on until the resources are consumed and then the best solution is selected. 
Section 4.5.11 better describes this point. 

2. Operators selection and application: According to the type of the selected DIone 
or more operators are applied on it, creating a set of new DIs. A description of the 
possible operators and their application conditions is contained in Sect. 4.5.13. 

3. Subgoal selection: A current subgoal (CS) is selected for each new goal DI. This 
is obtained through the application of a subgoal selection function that can use 
time adjacency considerations and heuristics derived from linguistic knowledge to 
perform its task. 

4. Constraint propagation: when a new goal DI is generated adding a word hypothesis 
or a deduced fact to a previous goal DI, constraints are propagated inside the new DI 
starting from the word hypothesis or fact. Constraints are only propagated towards 
the subgoals that are likely to become the current subgoal. Constraint propagation 
is quite important as it makes the subproblems description more specific. The 
constraints involved are time constraints, reducing the range where word hypotheses 
can be located, syntactic and morphological constraints limiting the lexical features 
of the candidate word hypotheses and finally semantic constraints. 

5. Quality factors computation: The function described in Sect. 4.5.9 combines the 
scores of the involved word hypotheses to obtain a quality factor (QF) for the DI. 
For the goal DIs only the word hypotheses that support it until now are considered. 
Remember that at least one word hypothesis is always present to support a goal DI. 

4.5.11 Optimality and Efficiency 

The analysis strategy is characterized by optimality if the first solution S (an agglomerate 
covering the whole utterance and being a plausible sentence in the given domain) selected 
by the scheduler has a quality factor such that no other solutions obtainable later on by 
continuing the analysis process can have a quality factor better than that of S. 

If the search strategy is optimal the analysis process can stop as soon as a solution 
is selected by the scheduler. Otherwise the analysis process should continue until the 
resources are exhausted; at that point the solution with the better quality factor (if any) 
is selected. Optimality is of course a desirable characteristic, but optimality does not 
always mean efficiency: a non-optimal search strategy, making use of heuristics, can lead 
to a solution with a smaller amount of search activity than that required by an optimal 
search strategy. Nevertheless an at least near-optimal search strategy has to be pursued, 
otherwise there are excessive risks of expanding almost all the implicit search space or of 
accepting an incorrect solution. 



www.manaraa.com

4.5 Parsing - Conceptual Level 

I 
I , 

171 

Figure 4.8: Deduction instances and search space. Deduction instances are states of a 
search spaces: in addition to the traditional OR links, auxiliary links (represented by 
dotted lines) have been introduced for the application ofthe merge operator to a goal DIl 
that involves a fact DI3 

4.5.12 The search space and the specialization relation 

The entire search process can be represented by a forest of OR-trees whose nodes are the 
DIs and whose links (called OR-links) relate to the operators application. The activation 
operator generates new OR-trees; in fact new independent deductive processes can begin 
as a consequence of the activation of a word hypothesis. An OR-link connecting two DIs, 
DIl and DI2, means that an operator applied on DIl gave DI2 as a result. 

A relevant aspect is that the various trees of the forest are not completely independent 
from one another. When the merge operator is applied to a certain DIl to generate a new 
DI2, a DI3 of another OR-tree has to be considered, given the intuitive meaning of the 
word merge. A new kind of link (indicated with dotted lines in Fig. 4.8) is added to the 
traditional OR-links: the merge operator generates a new DI that is connected both by 
a traditional OR-link and by an auxiliary link. An auxiliary link going from DI3 to DI2 
means that the generation of DI2 has been the result of the presence, in the DIDB, of 
DI3 but that DI3 has not been the immediate cause for the generation of DI2: it is only 
a precondition. 

With the exclusion of the activation and prediction operators, when a new DI is gen­
erated by an operator application, one of the involved links (either OR-link or auxiliary 
link) can be seen as a specialization relation between the two DIs. We say that a special­
ization relation holds between DIl and DI2 if DI2 is .more specific than DIl and they are 
connected by an OR-link or by an auxiliary link. This situation happens when DI2 has 
acquired new supporting word hypotheses or because one of its non terminal subgoals has 
been decomposed into subgoals in a certain way. 



www.manaraa.com

172 4 The Understanding Algorithms 

E F 

Figure 4.9: A DI that corresponds to the application of two KSs 

The prediction operator is an exception: in fact, though it generates new DIs from a 
fact DI and hence can be represented by arcs in the OR search graph, it does not actually 
specialize the fact DI it is applied to - indeed, a fact cannot be specialized at all, but only 
inserted into a new ·context. 

The specialization relation is treated with greater details in the following sections, 
where the various operators are explained. 

4.5.13 Description of the Operators 

The operators applied during the deduction phase are: subgoaling, verify, prediction and 
merge. When a certain DI is selected by the scheduler, one or more operators are applied 
to it. Which operators are applied depends on the selected DI. In the following we describe 
each operator, indicating the characteristics that the DI must have in order to apply the 
operator itself. 

We recall here what was said in Sect. 4.5.7: a terminal subgoal can be directly matched 
against the input data (word hypotheses in our case) and a terminal KS is characterized 
only by terminal slots. By the way, we recall that in SUSY each KS is characterized by 
at least one terminal slot (the one corresponding to the header). 

In the figures that will be used to indicate the operators applications, the following 
conventions will be applied: 

1. DIs are represented by trees (AND trees) according to the problem-solving structure 
of the applied KS. 

2. The daughter nodes of a given root node represent the symbols of the KS filler 
slots while the root itself represents the class of the KS. Figure 4.9 represents a DI 
example. 

3. The crossed nodes of a DI represent fact nodes while non crossed ones represent 
goal nodes; if a goal node has no daughters than it has st.ill not been expanded into 
subgoals (a KS.has still not applied to it). 



www.manaraa.com

4.5 Parsing - Conceptual Level 173 

SOl 

~ WH, 

• 
B • • 

• • 

cs~ 
• 

E F 

-- OR Links 

====> Specialization relation 

Figure 4.10: Application of the verify operator to a goal deduction instance SDI. n new 
goal deduction instances are generated. 

The VERIFY operator 

Type of operator: MONADIC. 
Starting DI: GOAL DIs with current TERMINAL subgoal. 
Generated DIs: GOAL or FACT DIs. 

The verify operator is applied to a goal DI characterized by a terminal current subgoal 
CS (see Fig. 4.10). The verify operator checks if the current terminal subgoal CS of the 
selected deduction instance SDI can be solved by some of the word hypotheses in the 
lattice. In the case of our knowledge representation formalism (the KSs), the terminal 
subgoal is usually the problem of filling the header slot of the KS. To do so, it matches 
the subgoal description of CS (resulting from the propagation of constraints from the rest 
of the DI) against the word hypotheses in the lattice. Let us suppose WH1, ... , WHn 
to be word hypotheses able to satisfy subgoal CS. For each of them the verify operator 
generates a new DI to be inserted into the DIDB. Each of these new DIs represents a new 
step of the deductive process that led to the SDI. The new DIs can be either goals or 
facts. The verify operator is then working mainly at the lexical component: the new DIs 
differ from SDI for having a new word hypothesis to support them in addition to those 
that support SDI. 

Thinking of the search space, these new DIs are directly connected by OR links to the 
starting SDI. A specialization relation exists between the SDI and each of the new DIs. 



www.manaraa.com

174 4 The Understanding Algorithms 

SOl NOI 

=======) .. 

....... .... ... ... WH 
.... 

Figure 4.11: Application of the verify operator. A "by-product" fact deduction instance, 
FDI, is generated 

In fact the new DIs have acquired new pieces of evidence at the word level; then a choice 
has been made, making them more specific than SDI. 

Another activity is also performed by the verify operator: in addition to the above 
mentioned new DIs, other fact DIs can be generated (see Fig. 4.11). That happens 
when the solution of the current subgoal CS leads to the generation of a new fact by the 
triggered KS (i.e. when the KS can generate a new complete constituent). The new fact 
from one side has been generated in the context of SDI, so it must be part of NDI, but 
from the other side, it now becomes a "free" fact FDI, that could be used by other DIs or 
on which it can be applied the prediction operator. Note that these additional new fact 
DIs are not connected through OR-links to the starting SDI; they are connected to SDI 
by an auxiliary lin.k, as the SDI was a precondition for the generation of these new DIs. 

A fact of this kind, like FDI, is extracted from the context in which its generation 
took place: its score is computed taking into account only the word hypotheses making 
up the fact itself while the other word hypotheses supporting the starting SDI are not 
considered. 

The SUBGOALING operator 

Type of operator: MONADIC. 
Starting DI: GOAL DIs with current NON-TERMINAL subgoal. 
Generated DIs: GOAL DIs. 

This operator is directly applied on the DI selected by the scheduler. This SDI must 
be a goal DI characterized by a non terminal current subgoal CS (see Fig. 4.12). The 
subgoaling operator triggers all the KSs that can decompose (sub )goal CS into subgoals 
(i.e. all the KSs that can hope to fill the filler slot CS); refer back to Sect. 4.5.7 if 



www.manaraa.com

4.5 Parsing - Conceptual Level 175 

SOl NSOI 

• 
====~> 

CS 

NCS 

Figure 4.12: Application of the subgoaling operator 

necessary. For each successful application of a KS a new NSDI is generated, characterized 
by subgoal CS decomposed into a set of subgoals that have (all) to be solved. In other 
words, node CS in the deduction tree of NSDI is not a leaf any more but has become an 
AND subtree corresponding to the problem-solving structure of the applied KS. 

In regard to the search space, these new DIs are connected by OR links to the starting 
SDI. There is also a specialization relation between the starting DI and each of the new 
DIs. In fact the new DIs are more specific than the starting one: the current subgoal has 
been decomposed in a certain fixed way and then a decision at the model level has been 
taken. 

The subgoaling operator works only at the model component: no word hypotheses 
are taken into account during its application. An interesting consequence is that the new 
DIs, generated when the subgoaling operator is applied on a certain SDI, all have the same 
quality factor as the SDI. Then they will be selected at once by the scheduler (they are 
as good as the starting DI). 

On these new DIs the subgoaling operator could be applied again, but this does not 
happen in our implementation: it is not possibile to continue the search at the model 
component without any further support from the lexical component. 

What really happens in practice is now described: we have seen that when a new DI 
is generated by applying the subgoaling operator on a certain SDI, the current (sub )goal 
CS of SDI is decomposed into a set of subgoals. Among these subgoals there is always 
at least one terminal subgoal NCS (the one related to the header slot) that is chosen as 
the current one by the sub goal selection function and is immediately solved by applying 
the verify operator on NSDI. Then the sequence subgoaling + verify is applied directly 
to SDI without having to insert into the DIDB the new DIs obtained by the application 
of the subgoaling operator alone. That is also important because often there are no word 
hypotheses that can satisfy that terminal subgoal (NCS). In such case no DIs are generated 
at all. 



www.manaraa.com

176 4 The Understanding Algorithms 

NSOI 

SOl 

A 
.. 

Figure 4.13: Application of the prediction operator. No specialization relation holds 
between SOl and the newly generated NSDI 

The PREDICTION operator 

Type of operator: MONADIC. 
Starting DI: FACT DIs. 
Generated DIs: GOAL DIs. 

The prediction operator is applied on a selected fact deduction instance SOl. New 
goal DIs are predicted starting from SDI (see Fig. 4.13). The prediction operator triggers 
the KSs characterized by having SDI able to satisfy one of their filler slots. For each 
applicable KS a new 01 is then generated. If the triggered KS had only one non-terminal 
filler slot, then a fact 01 instead of a goal 01 would be generated, but in our case only 
goal DIs are generated, as all the KS have at least the header slot that is a non-terminal 
one. 

The prediction operator, as well as the subgoaling operator, works mainly on the model 
component. In fact the new DIs have the same supported word hypotheses as the starting 
SOl. 

In regard to the search space, the new DIs are connected to the SOl by OR links. 
Note that there is no specialization relation between SOl and the new DIs. In fact we see 
each of the new DIs as a generalization step of the deductive process that led to SOl: a 
new root goal is generated and will be treated. 

From another point of view we could see the prediction operator as a way of generating 
new deductive processes (i.e. new OR-trees in the search space) in a way similar to the 
activation operator. But we prefer the first view as it is more consistent with the whole 
theory and with the merge operator in particular. 

The MERGE operator 

Type of operator: DYADIC. 
Starting DI: FACT or GOAL DIs (see below). 
Generated DIs: GOAL or FACT DIs (see below). 



www.manaraa.com

4.5 Parsing- Conceptual Level 

GDI 

---------
======~> 

__ .... _ OR LInk 

- - - _ Auxiliary link 

~ Specialization relation 

177 

NOI 

Figure 4.14: Application of the merge operator to a fact FDI (selected by the scheduler) 
and a goal GDI 

The merge operator is a dyadic operator. Thus it is applied on two DIs; the first 
one is selected by the scheduler (the best DI) while the second one is extracted from the 
DIDB. 

The merging process represents a way to join together two different paths of the search 
space. In fact, starting from two DIs that have evolved independently one from the other, 
a new DI is generated. This new DI is supported by the union of the word hypotheses that 
support the two DIs on which the operator has been applied; in addition the deduction 
trees of this new DI results from the union of the derivation trees of the two starting DIs. 

From the point of view of the lexical component, the application of the merge oper­
ator can be seen as a way to group together two different agglomerates that have been 
previously generated. It is similar to the proposed islands collision mechanism in the case 
of HWIM. 

A first point is which DIs are chosen to be merged with the DI selected by the 
scheduler. The set of candidate DIs depends on the characteristics of the starting DI 
and on some system parameters that control the amount of merging to be performed. A 
function that provides the set of DIs to (try to) be merged with the selected DI is defined 
in the system. 

There are two possibilities: in the first one (see Fig. 4.14), the selected DI is a fact 
(FDI) that it is going to be merged with a goal (GDI); in the second case a selected goal 
(GDI) has to be merged with a fact (FDI). The two cases differ only for which item (FDI 



www.manaraa.com

178 4 The Understanding Algorithms 

or GDI) has the best quality factor and then has been selected by the scheduler. 
Let us suppose that the subgoal CS of GDI can be solved by FDI. The resulting NDI 

can be either a fact DI or a goal DI. A fact DI is generated if the deduction tree of the 
goal DI contains only one subgoal. 

In regard to the search space, things are not as simple as before: two deductive paths 
are joined together and both are necessary for the solution. As we said before, NDI is 
connected to the selected DI (FDI or GDI) by an OR-link. In this way the search activity 
is still represented by OR-trees; in addition an auxiliary link connects NDI to the other 
DI. This one has not been selected by the scheduler but it has nevertheless been chosen 
as a candidate for being merged with the selected one. 

There is still a specialization relation either between GDI and NDI or between FDI 
and NDI. In other words the specialization relation could be either the OR-link or the 
auxiliary link: the merge operator application can cause the specialization of either the 
selected DI or of another DI. In Fig. 4.14 the specialization relation corresponds to the 
OR-link. 

Merging fact DIs with goal DIs allows a better integration among goal-driven and 
data-driven search activity and allows also the use of previous results of the search activity 

4.6 Parsing - Memory Structures 

4.6.1 Introduction 

In the previous section we have described from a conceptual point of view the inferential 
activity of the lattice parser of SUSY. Deduction instances (DIs) have been introduced as 
the basic conceptual items managed by the parser. They are deduction process instances 
on which the operators are applied. At each control cycle the best DI is selected by the 
scheduler and the proper operators (prediction, subgoaling, verify, merge) are applied to 
it. An activation phase is performed when the scheduler selects a word hypothesis instead 
of a DI (i.e. when the best word hypothesis is better than the best DI). 

One problem that has to be solved when using DIs and integrating forward and 
backward search activities is to reduce the amount of memory necessary to represent DIs 
and to properly structure the DIDB in order to simplify operators application (the merge 
operator, mainly). This section deals with these aspects and proposes a suitable structure 
for the DIDB: a hypothesis network making use of two main classes of links. 

4.6.2 Representing DIs with Memory Structures: Some Prob­
lems 

The deduction instances in the DIDB are represented by their deduction tree (DT). The 
most trivial way of implementing a DI would be of course to use an explicit DT for each 
of them. This solution, however, is not acceptable because of the large number of DTs 
that should be stored in the memory. 

To reduce memory occupation it is necessary to make DIs share common parts, if any. 
For instance, when two or more deduction instances are generated starting from a certain 
DI, their memory representations have some common parts. The most natural type of 
representation that meets such requirements are AND-OR trees. Unfortunately, a problem 



www.manaraa.com

4.6 Parsing - Memory Structures 179 

B 

Figure 4.15: A deduction instance (DIO) represented by an AND tree 

arises when constraint propagation is required: the use of AND-OR trees should assume 
the OR alternatives to be independent, but this is not true if constraint propagation has 
to be performed. An example will clarify this statement. 

Let us consider the goal deduction instance DIO depicted in Fig. 4.15. Let M be the 
current subgoal of DIO, and let us suppose that it is a terminal one and that it can be 
solved by two different word hypotheses WHI and WH2. Two new DIs, DIl and DI2, 
can thus be generated. The new situation, which makes use of AND-OR trees, is depicted 
in Fig. 4.16. 

Now, suppose that N is selected as the current subgoal of DIl. Unfortunately, N 
belongs to both DIs: DIl and DI2. Since they are distinct and endowed with different 
word hypotheses, the constraints that have to be transmitted to N are different in the two 
cases and it could happen that a fact DI of class N can satisfy, say, DIl but not DI2, for 
it is compatible with the constraints derived from WHI but not with those derived from 
WH2. This means that different constraints have to be propagated to subgoal N. This 
can be done by splitting subgoal N in two subgoals Nl and N2 and associating them with 
WHI and WH2 respectively. The new situation is depicted in Fig. 4.17: two alternative 
subtrees with roots Gl and G2 have to be generated. This second kind of use of AND-OR 
trees to represent DIs is the one really used by SUSY. 

The situation becomes even worse if we consider the other subgoals that could be 
chosen as current ones. Let us consider, for instance, subgoal J. If J were chosen as 
the current subgoal of the deduction instance DIl of Fig. 4.16, different constraints would 



www.manaraa.com

180 4 The Understanding Algorithms 

B 

Figure 4.16: Two deduction instances DIl and DI2 represented by using in a first way 
AND-OR trees: problems of constraint propagation 

Figure 4.17: Two deduction instances DIl and DI2 represented by an AND-OR tree 
duplicating subgoal G into G1 and G2 



www.manaraa.com

4.6 Parsing - Memory Structures 181 

B 

Figure 4.18: The AND-OR tree should represent four DIs but only two must be repre­
sented, as the OR alternatives are not independent. For this purpose two complete AND 
trees would be necessary 

have to be transmitted to J, and two different subtrees having root E should be generated, 
corresponding to WH1 and WH2 respectively. This is shown in Fig. 4.18. Note that the 
OR alternatives pertaining to nodes M and E are not independent, as one would expect 
if one interprets this structure as a normal AND-OR tree: the alternatives only exist in 
couples (indicated by dotted lines in Fig. 4.18). As a matter of fact, the tree represents 
just two DIs instead of the four that there would be if the ORs were independent. 

By applying the same reasoning to the other subgoals, it is easily seen that the whole 
DT has to be n-plicated into many DTs, each having its own characteristics and con­
straints. To keep the n DTs implicitly united in a single structure would be of no use. 

In order to continue to take advantage of the use of AND-OR trees also in the case 
when constraint propagation has to be performed, we have studied a memory represen­
tation in which the nodes can be shared between DIs without the need to n-plicate the 
tree. We show that this is feasible if strong limitations are imposed on the possible ways a 
deductive process can go on. This, of course, results in limitations on the possible topolo­
gies of the DTs; the admissible DTs are called canonical DTs, and the associated DIs 
are called canonical DIs. A remarkable aspect of these limitations is that they maintain 
complete integration between forward and backward activities. As a matter of facts, our 
system never uses DIs other than canonical. 



www.manaraa.com

182 4 The Understanding Algorithms 

4.6.3 Canonical Deduction Instances 

We define canonical DIs (CDIs) starting from the definition of canonical deduction trees 
(CDTs): 

Definition 1: 

• A DT is homogeneous if and only if it is a fact DT or a not yet decomposed (sub )goal. 
A non-homogeneous DT is one that is not homogeneous. 

Definition 2: 

• A DT is canonical if it is homogeneous 

• A DT is canonical if 

- All the (sub )DTs connected to the root are canonical and 

- No more than one of them is non homogeneous. 

• No other DTs are canonical. 

Definition 3: 

• A DI is canonical (CDI) if and only if it corresponds to a canonical DT. 

For example, the DIs represented by the DTs depicted in Fig. 4.19 are Canonical; the DI 
of Fig. 4.15 was non canonical (its DT has two non homogeneous subtrees). 

From the above definitions a consequence follows, that will be stated in the form of a 
theorem. 

Proposition: 

• Consider a goal CD! that corresponds to a non homogeneous deduction tree: such a 
tree contains exactly one non homogeneous one-level AND subtree. 
Proof - By recursion: consider the CDT associated with the CDI. If it is a one-level 
tree, the CDT itself is the subtree we are looking for. Otherwise, since the CDI is 
canonical, Definitions 1 and 2 ensure that its associated CDT has just one canonical 
non homogeneous subtree. Then the above discussion can be applied to this subtree, 
until a one-level canonical non homogeneous (sub )n-tree is found. 

We call this one-level non homogeneous AND subtree the NHS. An example is shown in 
Fig. 4.20. 

The proposition implies that there is a one-to-one correspondence between a goal CDI 
and its NHS. The NHS is called the representative of the CDI. In the case of a fact CD! 



www.manaraa.com

4.6 Parsing - Memory Structures 

B B 

o E F 

-I 

H J 

bl 

B 

J K 

«:) 

Figure 4.19: Example of canonical dedu.ction instances, CDls 

B 

E Subtr •• (NHS) . 

183 

Figure 4.20: The non homogeneous Subtree (NHS) in a canonical deduction instance 
(CD!) 



www.manaraa.com

184 4 The Understanding Algorithms 

its representative is assumed to be the one-level AND subtree of its root. In this way each 
CDI is represented exactly by one one-level AND subtree. 

We are now able to give the restriction on the way deductive processes can go on so 
that only canonical DIs are generated. The required restriction pertains only the subgoal 
selection function: 

• The current subgoal of a goal CDI can be selected freely only among the leaves of 
its NHS. 

Starting from a set of canonical DIs and applying the operators described in the previous 
sections, all the newly generated DIs have to be canonical. 

As far as the subgoaling operator alone is considered, this strategy is similar to a kind 
of deph-first search: only when a subgoal is completely solved (a fact is generated) is it 
possible to treat subgoals that are ancestors or sisters of that subgoal. When the merge 
operator is involved, two canonical DIs can be merged together only if the resulting DI is 
still canonical. 

The importance of CDIs lies in their one-to-one correspondence between DIs and 
their representatives one-level AND subtree. Indeed, the idea is to use somehow the 
above described representatives instead of the whole CDIs. More precisely, we want to 
characterize the representatives with all the information that is necessary to carry out 
an operator application to the CDI when it is selected by the scheduler. For example, 
temporal, semantic and syntactic constraints will be part of the necessary information, but 
a complete structural description of the DT will not. This objective can be practically 
realized by introducing a special structure called a phrase hypothesis (PH). How PHs 
are used to implement CDIs in a fashion that insures full compatibility with the use of 
AND-OR trees will be explained in the next section. 

4.6.4 Phrase Hypotheses as Representatives of CDls 

A phrase hypothesis is a memory structure that implements a one-level AND subtree. A 
PH is, on the grounds of its definition, a non-terminal problem that has been decomposed 
into subproblems according to a certain problem-solving structure and where none, one 
or more subproblems have been solved. From the point of view of the KSs, a phrase 
hypothesis can be seen as an instance of a KS, having its slots completely or partially 
filled and whose aim is to fill all of them in order to complete itself. Clearly, if all the 
subgoals have been solved, the PH represents a fact rather than a goal. If a PH represents 
a fact it is said to be complete; otherwise it is said to be incomplete. 

A PH is used to implement the NHS of a goal CDI, or the root one-level AND tree of 
a fact CDI, and stores all the information that is necessary for that CDI to be processed, 
when selected by the scheduler. In this way the PH acts as a "representative" of the whole 
CDI in the DIDB. As we have said, constraints are part of the information associated with 
PHs, and the canonicity of the CDI insures that the problems of constraint-conflict will not 
arise. Similarly, when a new CDI is generated, only one new PH is created, characterized 
by all the information necessary to process the new CDI and hence representing the whole 
new cm in the DIDB. 

We conclude this paragraph with an observation that will be resumed later on. Be­
tween PHs and KSs a n:1 relation exists, as PHs ·are instances of KSs. As there is also 



www.manaraa.com

4.6 Parsing - Memory Structures 

COl, 

B 

E 

H J 

b) 

.) 

B 

E F G 
c) 

185 

BCD 
d) 

Figure 4.21: The PH-tree in a) represents the three canonical deduction instances (CDIs) 
represented in b), c), d) 

a 1:1 correspondence between PHs and CDIs, it follows that all the fact and goal CDIs 
making up the DIDB can be partitioned into equivalence classes according to the KS they 
correspond to. 

Phrase hypotheses and AND-OR trees 

Phrase hypotheses can be connected by composition links (CLs) to form OR-trees of PHs, 
i.e. AND-OR trees, as PHs are AND trees. Let us consider, for example, the case of the 
simple tree given in Fig. 4.21a. Incidentally, this tree has no OR alternatives. Its structure 
strongly suggests a direct correspondence with the CD! reported in Fig. 4.21b (CDIl). 
However, only its node PHI represents CDIl: the other PHs represent other CDIs. For 
example, PH2 represents the canonical deduction instance CDI2 given in Fig. 4.21c and 
possesses all the information and constraints pertaining to CDI2j similar considerations 
hold for PH3, which represents CDI3. Thus the PH-tree actually represents three CDIs, 
and not only one. 

A misunderstanding must be avoided. When we said that PHI represents CDIl we 
did not mean that the other PHs are unrelated to CDIl, but only that PHI can be used 
alone when an operator is applied to CDIl. The way the other PHs are interconnected by 
CLs gives information on the structural characteristics of the CD!. We will refer to these 
PHs as the component PHs of the CD!. 

The interesting point is that PH-trees can have non-canonical structures, possibly 



www.manaraa.com

186 4 The Understanding Algorithms 

with OR alternatives; since only canonical Dis are considered, no conflict will arise. An 
example is shown in Fig. 4.22. The PH-tree of Fig. 4.22a represents seven CDls, three of 
which are reported in the figure. 

Figure 4.22b shows the canonical AND tree CDT6 represented by PH6. Clearly, the 
subtrees deriving from the OR alternatives PH4 and PH5 are not present; thus, CL4 and 
CL5 were discarded. However, CL1 has been discarded too; otherwise, the resulting DT 
would not have been canonical. Informally, one could say that PH6 "sees" the PH-tree 
it is part of as lacking the PH-subtrees that would give rise to a non-canonical structure. 
More precisely, PH6 represents a CDI describing a deductive process in which choices 
have been taken at the OR alternatives and subgoal B was not yet decomposed. Note, 
by the way, that CL2 is not discarded in CDT6 because, PH2 being the representative of 
a fact, the resulting structure is still canonical. 

A similar analysis may be done for the other two cases. The previous examples showed 
some general concepts that we now summarize: 

1. PHs correspond directly to KSs. 

2. A PH-tree of n PHs represents exactly n canonical Dis. 

3. An incomplete PH that is part of a PH-tree represents the canonical deduction 
tree corresponding to the only AND tree, extracted from the OR PH-tree, that is 
canonical and has PH as its non homogeneous subtree (NHS): when extracting AND 
trees from PH-trees, the CLs are taken into· consideration if and only if they do not 
compromise canonicity. CLs to facts do not compromise canonicity. 

4. A complete PH has the same structure of an incomplete PH, the difference being 
that there are no subgoals but only facts. A complete PH always represents a fact 
CDI. 

Phrase hypotheses and contexts 

There is an alternative way of seeing the correspondence between phrase hypotheses and 
Dis. From this point of view there are two kinds of PHs: those whose root is free (i.e. it 
is not connected to other PHs) and those whose root is not free. The former PHs are said 
to be free from context while the latter are within a context. 

If a PH is within a context, its quality factor takes into account also all the word 
hypotheses which are involved in such a context; in this way it is the representative of the 
whole context. Of course the definition of context is recursive, so in Fig. 4.23, PH1 is in 
the context of PH2 that is, in its turn, in the context of PH4: so PH1 is in the context of 
both PH2 and PH4. 

The result is that the context of PH1 is the whole deduction tree and the word 
hypotheses that have to be considered to determine its quality factor are B,L,M,N ,H,I 
(the solved terminal subgoals of the deduction tree). In such a way PH1 represents the 
whole 01. The constraint of canonicity means that the PHs constituting the context of 
PH1 (i.e. PH2 and PH4) must have the remaining subgoals (i.e those not on the context 
path: C and G) either already solved (like E,B and H) or still to be decomposed (like F 
and D). 



www.manaraa.com

4.6 Parsing - Memory Structures 

B 

b) 

PH7 / 

I 
I 

I 
\ 

I 

" I 
18 

I 

I) 

N 

PH, 
I 

I 
I 
I 

o 

I 
I 

,,-' 
I 

IA 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I , 
",-

\ L .. I --------"" 

c) 

187 

G H 

d) 

a. The AND-OR tree of phrase hypotheses represents seven canonical DIs. Seven AND 
trees can be extracted, each corresponding to a canonical DT. 

b. The CDT corresponding to PH6. CLI has been discarded, otherwise the DT would 
not have been canonical. When extracting AND trees, the CLs are taken into 
consideration if and only if they do not compromise canonicity. 

c. The CDT corresponding to PH3. CL5, CL6 and CLI have been discarded. 

d. The CDT corresponding to PHl. CL2 has not been discarded: CLs to facts do not 
compromise canonicity and hence they are always considered. 

Figure 4.22: Phrase hypotheses and AND-OR trees 



www.manaraa.com

188 

"'- .... , 

PH, 

4 The Understanding Algorithms 

\ PH, 
\ 

\ 
\ 
\ 
\ 
I 

Figure 4.23: A phrase hypothesis PHI in the context of two other phrase hypotheses PH2 
and PH4 

4.6.5 Search Space of CDls and Links Between PHs 

Since every goal or fact CDI corresponds to a single representative PH, it follows that the 
Specialization Relations between CDIs can find a mapping onto a relation between PHs. 
This relation is represented by links that connect PHs. Two different kinds of links exist: 

1. The first type of link refers to PHs corresponding to different KSs: it is the compo­
sition link CL between PHs that we have introduced before. Until now, CLs were 
used to form OR trees of PHs. As we have seen, they do represent the topology of 
a deduction tree, that is, the structural characteristics of a DI. 

2. The second type of link refers to PHs of the same KS. It is a novel link called a 
specialization link (SL). An SL is only used to represent the specialization relation 
at the memory level. 

Figure 4.24 presents a simple example. The specialization relation sr between CDIl 
and CDI3 is transferred to the memory level as a specialization link SL between PHI and 
PH3. 

To be precise, an SL between two PHs does not simply map a specialization relation, 
but maps an element of the transitive closure of the specialization relation. Note that 
specialization relations can be represented, at the memory level, also by the CLs (when 
the subgoaling and merge operators are involved). 

The example in Fig. 4.25 shows that link SL3 between PH2 and PH5 corresponds to 
an element sr* of the transitive closure of the specialization relation. A specialization link 
between PH4 and PH5 was not inserted because PH4 and PH5 refer to different classes; 
anyway it is not necessary, being present link SL3. PH5' represents the by-product CDI5' 
obtained through the application of the verify operator to CDI4. 



www.manaraa.com

4.6 Parsing - Memory Structures 

B 

o 

PH, 

CDI'\ /(j!)CDI2 

or I 
I 

I 

.1 COl. 

I 
I 

E F 

/'-, 

IC \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 
\ I ,_D ___ E __ .!_' 

COl. 

A 
G H 

bl 

SL 

~ 

I 
I , 

I 
I 

I 

, 
I'E 

B 

COl. 

G 

\ I 
" G H / cl --------

189 

H 

The specialization relation sr between CDIl and CDI3 (a) has been transferred to the 
memory level (c) as a specialization link SL between PHI and PH3 (representing CDIl 
and CDI3). 

Figure 4.24: Specialization relation and specialization links 



www.manaraa.com

190 

b) 

c) 

sr· 
-------........ - ---

" 
.,1 

el, 
,-------

4 The Understanding Algorithms 

.,5 

COl 
Level 

'" 
PH, 

Sl, 

~~ 
SL., ';'Q PH. 

Sl. 
PH. 

0 :> 0 >0 

~ 
PH 
level 

SL, 

Cia .. A A 

,-, , \ 

'A \ 
PH, / \ 

--- ----'\., \ 
----v' , , 

I ,e 
\ 

PH~ 

,----- --'" 

8 8 A A 

"-"\ 
IA \ , \ 

S3 .,' \ __ J' 

======::====~) I \ ---;/ 

/ \ 

/'-, 
\ 
\ 
\ 

\ 
\ 

\ 
\ 
\ 
I 

I 

/8 \ 

I 
IE 

I 

\ I 

,--------"" 

Mapping among specialization relation (a) and specialization and composition links (b). 
The specialization link SL3 between PH2 and PH5 (b and c) corresponds to the sr* 
connecting CDI2 to CDI5. For efficiency reasons link CLI' is maintained (CLs are also 
use to constitute the AND tree associated with CDls). 

Figure 4.25: Specialization relation and composition links 



www.manaraa.com

4.6 Parsing - Memory Structures 191 

, ... 
I \ 

/A , 
I \ 

I , 
I , 

I \ 
I \ 

I \ 
/ \ 

I \ 
I I 
'~ ___ C ___ 0 __ J .. J 

COil 

Figure 4.26: Application of the verify operator: no facts have been generated 

Note that a link, SL3', was added between PH4 and PHS'. This link does not represent 
a specialization relation at all but only an auxiliary link. Links such as SL3' are added 
only because they are useful during the application of the MERGE operator. In Sect. 
4.6.9 this subject will be discussed in further detail. 

In summary, if PH1 is connected by a SL to PH2, then CDU (represented by PH1) 
is less specific than CDI2 (represented by PH2). This means that CDU is one of the 
previous states of the deductive process leading to CDI2. CDI2 does not need to be 
directly connected to CDU by a specialization relation, but they must be connected 
by the transitive closure of the specialization relation. In other words there must be 
a sequence CDIU, .... ,CDUn of deduciion instances such that CDU is connected to 
CDIU, CDIU to CDU2, ... , CDI1n to CDI2. 

PHs connected by SLs form the 50-called specialization trees (STs). From what was 
·said above, each ST corresponds to a KS and the level of a PH in the ST corresponds to 
its level of completion: complete PHs are always leaves of STs. In Sect. 4.6.4 it was said 
that, as there is a 1:1 correspondence between PHs and CDIs, all the fact and goal CDIs 
making up the DIDB can be partitioned into equivalence classes according to the KS to 
which they correspond. So STs correspond directly to KSs. 

The following sections deal with the application of specific operators, and they will 
better clarify these concepts. 

4.6.6 The VERIFY Operator 

The VERIFY operator solves a terminal subgoal with a suitable word hypothesis from 
the lattice. That subgoal could be solved in many different ways if there is more than 
one suitable word hypothesis. Let CDU be a goal deduction instance characterized by a 
current subgoal CSj let PH1 be the phrase hypothesis representing ODI1 (see Fig. 4.26). 
Let us suppose that the VERIFY operator is applied to CDI!. For the sake of simplicity, 
let us assume that only one suitable word hypothesis WH can be found in the WHDB 
able to satisfy CS. 

The resolution of CS requires the generation of a new deduction instance CDI2. From 
the memory point of view it will be necessary to generate (at least) a new PH in order to 



www.manaraa.com

192 

"'-, 
;' \ 

'A \ , \ 

\ 
\ 

\ 
\ 

\ 
,8 C 0\ 
\ (es) / 

..... _- -------' 

SL 

===~> 

4 The Understanding Algorithms 

,- ... 
I '. 

'A \ PH2 , \ , \ , \ , \ 
I \ 

I \ 
I , 

I , 
, I 
' ... ~ __ E __ .P_~ 

Figure 4.27: Application of the verify operator: only one complete phrase hypothesis 
(PH2) has been generated by the application of the verify operator 

represent the canonical deduction instance CDI2. It is then reasonable to make a copy of 
PHI generating a new hypothesis PH2 where its subgoal CS is solved by WHo 

By now two different kinds of actions are taken, according to whether PH2 is still a 
goal or has become a fact: 

1. In the first case (as in Fig. 4.26) PHI and PH2 must be connected by a specialization 
link SL. In this case, therefore, the specialization relation between CDIs is directly 
mapped onto a SL between PHs. 

2. In the second case (PH2 is a complete one) there are still two possibilities: 

• In the first one PHI has no ancestors (see Fig. 4.27). In this case there would 
be no other goals to be solved and the deduct.ive process associated with CDIl 
can stop. The new CDI2 is then a fact DI connected by a specialization relation 
to CDIl. At the memory level PH2, that is a complete PH obtained in the 
same way we have seen before, is connected by a specialization link SL to PHI. 

• In the second one PHI has ancestors (see Fig. 4.28). In this case PH2' is not 
at all a representative of a specialization of CDIl: it is only the representative 
of a new CDI (CDI2') that represents the by-product of the application of the 
verify operator to CDII. Here PH2' is connected to PH! by a specialization 
link SL3, though this link does not represent a specialization relation at all. 

In the last case what we have to do is to run the specialization relation backward until 
a deduction instance CDIO pertaining to a different KS is found. At the memory level 
we can do that simply following the CL of PHI. A new deduction instance CDI2 is then 
generated and represented by a new phrase hypothesis PH2, obtained by copying and 
specializing hypothesis PHO. The specialization consists in solving the current subgoal 



www.manaraa.com

4.6 Parsing - Memory Structures 

CLASS OF RS A C C A 

COlo 

• sr1 I 112 

1 (SUBGOALING) I (VERIFY) I, '\ 

i ' 
L , I \ 

,{ \ i I \ 
I \, • PH, 

PHO,' I SL, 1 \ 
I I ==~I==========~==~> , \ i 

(~ ,'I ' , cSo I , I -------- -;. I 

I 
I 

;J, ,; -, J 
" PH', l'c \ / 

\ ~-~.!'.. " \<,~ 
\ -- --,,' " " 

\ I \ 
\ I 1 

\ ... .! __ !. __ ~.,) "-..! ___ F ___ '!.J..' 

193 

Figure 4.28: Application of the verify operator: more than one complete phrase hypothesis 
(PH2 and PH2') has been generated by the application of the verify operator 

CSO of PHD with PH2' (i.e. a composition link between PH2 and PH2' is established). 
PH2 is then connected to PHO by an SL. 

Now, if CDI2 is still a goal, the situation is precisely the one depicted in Fig. 4.28. If 
instead the result is that CDI2 is a fact itself, the above mentioned procedure takes place 
again, until applicable. 

4.6.7 The SUBGOALING Operator 

We consider the application of the subgoaling operator to a certain CDIl characterized by 
a current subgoal CS and represented by phrase hypothesis PHI. 

Let us assume the result of the application to be a new CDI2 where the current subgoal 
CS of CDIl has been decomposed into the subgoals (E,F,G) according to a given KS. The 
phrase hypothesis that represents CDI2 is PH2 (see Fig. 4.29). One of its subgoals, say 
F, will then be selected as the current subgoal NCS for CDI2. 

CDI2 is more specific than CDIl because it contains more information about the 
way of solving one of its subgoals; then it must be connected to CDIl by a conceptual 
specialization relation. PH2 is connected by the composition link CLI to PHI. 

Composition link CLI stands both as a structural way of reconstructing the deduction 
tree corresponding to CDI2 and as a correspondant of the specialization relation between 
CDII and CDI2 at the memory level. 

4.6.8 The PREDICTION Operator 

The prediction operator is applied to a fact CDI and generates new goal CDIs. We consider 
the case, shown in Fig. 4.30, in which the prediction operator is applied to fact CDIl, 



www.manaraa.com

194 

... -, 
I' \ 

'A \ 
PHI I , , , 

I 
I , 

r 

/ ' 

\.2' ___ C __ 

4 The Understanding Algorithms 

Current SubC/o.' (CS) 

New Current BubC/o.' (NCB) 

Figure 4.29: Application of the subgoaling operator 

represented by PHI, and generates the goal CDI2. 
It is assumed that the KS requires three fillers slots of class B, C and D, and that D 

is the subgoal solved by the fact F. Then the result of the prediction application is the 
generation of a new phrase hypothesis PH2 connected to PHI through CLI. One of its 
subgoals (say B) will be selected as the current subgoal for CDI2. 

Note that CDI2 is a novel goal to be pursued; thus it is not connected by a SL to any 
CDI. The function of the prediction operator is the "creation" of novel goal CDIs rather 
than the specialization of already existing CDIs. The CDIs generated by the application 
of the prediction operator are the roots of future conceptual specialization trees. 

4.6.9 The MERGE Operator 

The merge operator is the most complex of the four operators. Given the current deduction 
instance CDIl, the merge operator, being a dyadic operator, tries to use other CDIs 
contained in the DIDB to produce new CDIs. 

Not all the CDIs of the DIDB are candidates for the merge operator application; only 
a subset is extracted. Let be CDI2 one of them. If the tests on the constraints condi­
tions succeed, the merge operator applied on CDIl and CDI2 generates a new deduction 
instance CDI3. 

Merge can take place during both bottom-up and top-down search activity; the in­
volved tasks are nevertheless the same. Fig. 4.31 represents the application of the merge 
operator between fact CDIl and goal CDI2. CDIl is represented by phrase hypothesis 



www.manaraa.com

4.6 Parsing - Memory Structures 

PH, ' 
I , 

I 
I 

I 

I 

;- , 

'0 , 

NHS Corresponding to COl2 

Fact Corresponding to COl, IF) 

\ E F G ,--------

Figure 4.30: Application of the prediction operator 

195 

PHI; goal CDI2 is represented by phrase hypothesis PH2, current subgoal CS. The cur­
rent subgoal CS of CDI2 has to be of the same class (D in figure) of CDU. What happens 
is very similar to the application of the verify operator: a new goal CDI3 is created, 
substituting subgoal CS of CDI2 with the fact CDI1. 

As was the case with the verify operator, two cases must be distinguished, according 
to whether PH2 completes itself thanks to PHI or not. If not, CDI3 is a more specific 
goal than CDI2 (a conceptual specialization relation connects them). 

Then the new phrase hypothesis PH3 of CDI3 will be connected to PH2 by a SL. This 
is the actual situation depicted in Fig. 4.31. Otherwise, if PH2 completes itself, beside 
the creation of the appropriate links, It would be necessary to follow the procedure that 
has been described during the illustration of the verify operator; we do not repeat those 
considerations. 

It is interesting to observe that the CDI selected by the scheduler (selected CDI) could 
be either the fact (CDU) or the goal (CDI2). Considering a single couple of CDIs the only 
difference is that the specialization relation always connects the goal CDI to the new CDI 
while in the search OR tree the selected CDI is always connected to the newly generated 
CDI (see Fig. 4.32). 

How links are exploited 

The compositional and specialization links are used heavily during many phases of the 
control cycle. We have illustrated how CLs and SLs are followed during the application 



www.manaraa.com

196 

co.: (PHo + PH.) 

\ , 
\ 
\ 

to " ',!.C':;!" _! ___ F_,' 

PH, I 
I 

I 
I 

I 
I 

,-, , 
/0 

'- H K I .... --------" 

,-, 
'. 

4 The Understanding Algorithms 

, 
'. PH, , 

\ 
\ 
\ 
\ 
I 

Figure 4.31: Application of the merge operator: merging a fact DI with a goal DI. The 
merge operator applied on CDIl and CDI2 (represented by PHI and PH2) generates CDI3 
(represented by PH3) 

I , 
I 

COl, ~ , , , 
\ , 

I 
I 

t 
a) 

, I , , , I 

ct", COlt 

, 

" 
b) 

Figure 4.32: Application of the merge operator on a fact and a goal Dr. Auxiliary links 
(represented by dotted lines) can start either from the goal (CDI2) or from the fact 
(CDIl). a) The scheduler selected goal CDI2. b) The scheduler selected fact CDIl. No 
differences are present at the memory level for the two cases (see Fig. 4.31) 



www.manaraa.com

4.7 Parsing - Dealing with Missing Words 197 

of the verify operator (Sect. 4.6.6); here we shall describe the use of specialization links 
during the application of the merge operator. 

1) Merge of a fact CD! with a goal CD!; the selected CD! is a fact. 
All the KSs that have at least a filler slot of the class of the selected fact CDI are triggered. 
Then, for each KS, its associated specialization tree is scanned, searching for goal CDIs 
(in practice, PHs) that could be merged with the fact CDI. When a phrase hypothesis PH 
is found that is not compatible for merging, the specialization subtree having PH as its 
root is no longer searched: in fact, the PHs belonging to that subtree are more specialized 
than PH and thus they too will be incompatible for merging. The decision whether two 
CDIs (represented by their representative PHs) are compatible or not depends on the 
constraints propagation and check activity. 

2) Merge of a goal CD! with a fact CD!; the selected CD! is a goal. 
Let CDIl be the selected goal CDI and CS its current subgoal. All the KSs are of the 
same class as CS. For each of them its associated specialization tree is scanned, searching 
for fact CD!s (PHs) that could be merged with CDIl. It is interesting to note that thanks 
to the "spurious" SLs (like SL3' of Fig. 4.28) candidate fact DIs can be easily found as 
the leaves of the specialization tree. This explains why those links were added. 

4.7 Parsing - Dealing with Missing Words 

4.7.1 Introduction 

This section describes a method for analyzing lattices of lexical hypotheses when short, 
less significant words are not detected by the recognition system. The basic consideration 
is that some function words, like articles, some prepositions and other usually short words, 
are often unnecessary to understand a sentences. Thus it is possible to correctly analyze 
a lattice in which some of these words are missing without querying the user. 

There are other cases of possibly missing words, different from the one referenced 
here in that the words have a significant semantic content. For example, words such 
as 'mount' or 'Piedmont' (that is, common or proper nouns of the domain's entities) 
are usually essential for understanding the uttered sentence and thus they fall into the 
latter category. To cope with cases in which a word of such a type is not present in 
the lattice of lexical hypotheses, it is necessary to correctly understand the parts of the 
sentence in which all of the right words have been hypothesized, to spot the zone of the 
utterance in which the undetected word should lie, and either to perform a more specific 
verification at the phonetic level, or to start an interaction with the user aimed at eliciting 
the information necessary to identify the word. 

4.7.2 The Problem 

The problem of devising a strategy able to analyze a lattice independently (at least to 
a certain extent) from the presence of some types of short word hypotheses cannot be 
eluded, because short words, consisting of one or two phonetic units, are by their nature 
unreliably recognized. A short word covers a very low number of states of the hidden 
Markov model used to represent it [17], and then its score depends heavily on random 
events (burst noise, defect in pronunciation, etc.) that are temporally coincident with 



www.manaraa.com

198 4 The Understanding Algorithms 

the uttered word. The situation is different for a long word, because it covers a high 
number of states and thus its score depends on events spanned on a longer hystory; that 
is, it is more 'averaged'. In addition there is the problem of coarticulation between such 
short word and the previous and subsequent word that affect the real pronunciation of the 
word. So, short words happen more frequently than long words to be badly recognized or 
to go undetected; in addition, their scores are not always reliable. If they are undetected, 
a standard analysis requiring all of the uttered words to be present in the lattice simply 
would not work, and if they have bad scores it would encounter heavy inefficiencies. 

There is also an opposite problem for continuous speech. It can happen with a certain 
frequency' that false short words are erroneously detected, and a good score is assigned 
to them. That is especially true when their phonetic representation is also part of a 
longer word that was actually detected and if their corresponding time interval is free of 
significant score-degrading events. In these cases, a standard analysis would unduly delay 
the solution by considering such incorrect word hypotheses. 

Types of frequently missing short words 

In the subset of the Italian language defined by the knowledge bases of the system, short 
words of the type mentioned above fall into different classes. 

1. Articles ("il", "10", "la", "i", "gli", "Ie"). The presence of such words is, in our 
domain, almost always irrelevant for the correct comprehension of the utterance, 
provided the other words are correctly recognized. Indeed, using grammar rules it 
is possible to infer what the appropriate article should be, given a correct inter­
pretation of the rest of the sentence; so this information can be used to complete 
recognition. 

2. Prepositions ("di", "a", "da", "in", etc.). Italian prepositions come in two types, 
simple and articulated. Simple prepositions are usually very short and generally 
monosyllabic. Articulated prepositions, which group into a single word a prepo­
sition ana an article (e.g. "dello" ["If the"]), are instead longer and more easily 
recognized. Though in some cases they are unnecessary to understand a sentence, it 
is not desirable to simply ignore them, because they could provide useful temporal 
constraints and (especially the long ones of them) carry a reliable score. So care 
must be taken in handling with missing prepositions. A good approach would be 
one that, though able to abstract from prepositions in general, takes some types of 
them into consideration under appropriate circumstances. 

3. Auxiliary verbs ("e", "ha"). Same as articles or simple prepositions. Again, how­
ever, other (longer) verbal forms of "essere" (to be) and "avere" (to have) could 
provide useful constraints. The discussion is similar to that about prepositions. 

4. Conjunctions ("e", "0"). For correct understanding it is of course essential to distin­
guish between conjunctions such as 'and' and 'or', so their loss is irrecoverable. In 
the present phase of the project, however, the syntactic/semantic knowledge bases 
do not allow the use of conjunctions. 



www.manaraa.com

4.7 Parsing - Dealing with Missing Words 199 

The basic idea 

The most trivial approach to the problem of short words is simply to ignore them totally, 
just placing a suitable temporal 'hole' in the zones where they should lie, according to the 
syntax rules 1. However, such an approach presents some drawbacks because, as was said, 
some words could provide useful constraints or positively influence the analysis thanks to 
their score. Thus a more flexible strategy was devised. 

The basic observations on which the strategy is grounded are the following. Short 
words of the kind previously considered, even when present in the lattice, are not of much 
aid to predict concepts, given the reduced reliability of their scores. Thus the problem of 
solving subgoals corresponding to this type of words should be treated differently from 
the 'normal' subgoals. In particular: 

1. the problem should be solved 'locally' by the deduction instance (by the phrase 
hypothesis at the memory level) containing such subgoals; 

2. the subgoal solving procedure must be able to assume, under some specified condi­
tions, that the subgoal has been 'solved' all the same, even without finding suitable 
words in the WHDB. This special action, that allows it to cope with missing words, 
will be called default solving in the following; the normal subgoal-solving will be 
referred to as the search solving (i.e. tha.t requires a search in the lattice); 

3. one would still like to exploit time constraints and score contribution of words, 
particularly if they have a significant length; 

4. the 'localization' of the problem might give ri.se to some non-optimalities, but this 
can be tolerated if quasi-optimality is preserved in practice and a significant im­
provement in efficiency is reached. 

The approach: the JVERIFY operator 

The previous considerations gave rise to a strategy based on the following principles. 

1. The short words previously discussed are accounted for by a special conceptual type 
called jolly and represented as J. In the dictionary these words are linked to the 
conceptual type J. 

2. Each time an analysis starts, the word hypotheses belonging to this category are 
extracted from the lattice and introduced into a separate database called the jolly 
data base (JOB). 

3. A knowledge source (KS) may contain one or more slots of type J, but there are 
no KSs having J as the header conceptual type. That is, there can be KSs with a 
problem-solving structure like: 

INote that even a somewhat drastic approach like this has nothing to do with keyword-based under­
standing. In fact, though short words are allowed to be missing from the lexical hypothesis data base, 
their 'functional' role defined by syntax is preserved. 



www.manaraa.com

200 4 The Understanding Algorithms 

but not such as: 

In other words, jollies become terminal subgoals. Consequently, the activation, 
prediction and merge operators are precluded from acting on words of type J. This 
limitation has mainly the purpose of preventing the jollies from generating by their 
initiative a lot of unreliable deduction instances. 

4. From the previous point it follows that a jolly subgoal has to be solved during a 
backward step. However, the subgoaling operator cannot be used, because the jollies 
are terminal subgoals. Even the verify operator cannot be used as such, because it 
is not able to accomplish the default solving defined above. Thus, a new operator, 
jverify, was added. Next section contains a detailed description of the actions taken 
by jverify, when it is applied to a deduction instance. The subsequent section will 
discuss how to integrate the application of jverify in the control strategy described 
in the previous section. 

4.7.3 How JVERIFY Works 

This section is divided into three parts. The first two describe the actions taken by jverify 
during the search and the default solving, respectively. The third explains how they are 
integrated. 

Search solving 

During the search jolly solving, jverify operates much as verify works. The jverify operator 
is applied on a goal DI having a jolly (and hence terminal) subgoal J (see Fig. 4.33). The 
subgoal J will be characterized by its morphological, semantic and temporal constraints, 
in a way similar to those of a normal subgoal. The jverify operator checks if the subgoal J 
can be solved by jolly word hypotheses satisfying the constraints. Such word hypotheses 
are contained in the Jolly Data Base (JDB) that is extracted from the WHDB at the 
beginning of the analysis. Let us call JH1, .... ,JHn the word hypotheses of the JDB able 
to satisfy subgoal J For each of them the jverify operator generates a new DI having a 
new quality factor that keeps into account the score of JHi. The newly generated DIs 
are inserted into the DIDB and can be goals or facts. In either case, the new DIs are 
connected to the starting DI by OR links. 

Similarly to the verify operator (see Sect. 4.5.13), jverify can generate fact DIs in 
addition to the above mentioned set of DIs; in such case the discussion is analogous to 
the one for verify. From the point of view of the phrase hypotheses, the situation is again 
very similar to what takes place during the application of the jverify operator. 

Default solving 

In the default solving, starting from a given DI (see Fig. 4.34) having a jolly subgoal J, 
a new DI is created, in which the subgoal J is labeled as solved, without associating any 
word hypothesis to it. 



www.manaraa.com

4.7 Parsing - Dealing with Missing Words 201 

Selected 01 

~ JH1 

• 
• • 
• • , • 

J 

_ ORUnk. 

::=::::> Specialization relation 

Figure 4.33: Application of the jverify operator - search solving 

The new DI keeps the quality factor of the starting DI. It is then inserted into the 
DIDB and connected to the starting DI with an OR link. A new by-product fact DI can 
also be generated if it is the case. 

Default solving, which is useful for making the analysis proceed independently on the 
contents of the JDB, is dangerous if used too heavily because it generates many DIs and 
so must be carefully controlled. 

The idea is to consider totally unreliable the recognition of words shorter than a 
threshold Sj. Thus, ifthe lattice does contain some word hypotheses shorter than Sj, they 
are considered unreliable and discarded when the JDB is extracted from the lattice. It 
follows that a subgoal J is default-solved only if its time constraints are compatible with 
a fictitious word hypothesis of length Sj. Of course, the gap tolerances must be kept into 
account. More precisely, let Ed be the maximum allowed gap between word hypotheses, 
and ((l1 '2) (r1 r2» the time constraint of J, where (l1 '2) is the range where the word 
hypotheses should begin and (r1 r2) the range where it should end. 
Then, J is default solved if 

The new time interval of node J is then restricted by assuming that a lexical hypoth­
esis of maximum length Sj has been associated with it. Temporal constraints are then 
propagated to the other subgoals of the DI (like F in Fig. 4.34). Of course, acting on the 
threshold Sj regulates the amount of default solving. The most suitable value of Sj must 
be determined experimentally. 



www.manaraa.com

202 4 The Understanding Algorithms 

Selected 01 New 01 

=====~> .. 

E F J E F J 

--. OR Links 

=:::::::> Specialization relation 

Figure 4.34: Application of the jverify operator - default solving 

Integrating search and default solving 

The most relevant aspect of a DI having a default-solved jolly subgoal is that it is equivalent 
to any DI of the same type, having the jolly subgoal solved by a word hypothesis. At the 
extreme, raising Sj to the value of the largest jolly of the JDB, the search solving should 
not be performed. It is important, then, to avoid the generation of DIs with jolly subgoals 
solved by search if it is possible to solve them by default. 

A different problem is the following. If we know, given the syntactic-morphological 
constraints, that a Jolly subgoal must stand for a long word (such an articulated prepo­
sition like "dello" ["of the"]' it is of no use trying to solve that subgoal by default, even if 
its temporal constraints would allow such an operation. Conversely, if we know that the 
subgoal stands for a very short word, there is no need to try the search solving. 

The first problem (avoiding useless search-solved jollies) can be coped with by limiting 
the search for words during the search solving. This is obtained by restricting the original 
time interval of the unsolved jolly subgoal in order to exclude the possibility of accepting 
word hypotheses that generate DIs that are equivalent to those obtained by default solving. 

The second problem (avoiding useless default-solving of surely long jollies) is coped 
with by examining the morphological constraints for the Jolly subgoal. If they make it 
possible to determine if the word must be definitely short or long, the search or the default 
solving are inhibited, respectively. Otherwise, jverify proceeds normally. 

A flag exists for inhibiting default solving that is used, for example, in the so-called 
'text mode'. In 'text mode', a fictitious lattice is built up just by typing the words from 



www.manaraa.com

4.7 Parsing - Dealing with Missing Words 

COMPUTE 
QR.ED 

INTERVAL 

SEARCH 
SOLVING 

y 

y 

SEARCH 
SOLVING 

DEFAULT 
SOLVING 

Figure 4.35: Operations performed by the jverify operator 

203 

the keyboard, as in a written-language understanding system. This mode is frequently 
used for rapidly debugging newly-expanded knowledge bases without having the need for 
true lattices. Since the purpose is to check semantics and syntax, the words of type jolly 
cannot be ignored and thus default solving has to be inhibited. The global operation of 
jverify is shown in Fig. 4.35. 

4.7.4 When to Apply the JVERIFY Operator 

Having defined the jverify operator, a way has to be devised to integrate the use of such 
operator within the standard control strategy described in the previous sections. Many 
modalities have been tested. 

The simplest modality consists in submitting the jverify application entirely to the 
standard strategy, considering it just as another 'normal' backward operator. In this case, 
jverify is applied whenever the scheduler selects a DI whose current subgoal is of type 
jolly. Other more complex modalities have been experimented with and proved a little 
more effective, but we are not going into details here. Extensive data on the experiments 
can be found in the next section. 



www.manaraa.com

204 4 The Understanding Algorithms 

4.8 Experimental Results 

This section presents the result of extensive experiments performed in order to assess the 
functionality of the whole recognition/understanding system. 

As is well known, evaluating the performance of speech recognition systems is a dif­
ficult task, especially when continuous utterances are treated. This is mainly due to the 
difficulty of establishing standard analysis conditions and standard performance metrics. 

Recently, some efforts have been devoted to defining common databases of spoken 
utterances, especially in the U.S.; for instance, the DARPA has supported the develop­
ment of a database of continuous sentences that should be used for evaluating speaker­
independent systems. However, such databases refer to a specific dictionary and hence 
to a specific domain; they are therefore of no use for speech understanding systems that 
have been developed over different domains, not to speak of different languages. 

The situation is more promising on the side of performance metrics. Apart from 
the fact that one obvious measure exists, namely the percentage of successful sentence 
recognition, some other recognition measures are gradually emerging as the most diffuse in 
the worldwide research, if not as true standards [34,31]. However, when the purpose is to 
understand a sentence rather than to recognize its words, subtler problems arise: is it still 
significant to rely on measures more or less related to the number of correctly recognized 
words, or would it be more meaningful to measure the performance on the grounds of 
correct understanding (i.e., in a pragmatic sense, of correct answer to the question)? In 
the measures presented here a compromise has been adopted: performances are given in 
terms of rate of correctly recognized sentences, where by "correctly recognized sentence" 
we mean a sentence that is composed of the words which were actually uttered, except for 
short functional ones, which - according to the treatment described in Sect. 4.7 - can be 
directly hypothesized by the parser without being necessarily present in the lattice. For 
example, suppose that the actual sentence was "Dimmi la regione cui appartiene Torino" 
and the recognized sentence is "Dimmi la regione? ? appartiene Torino" (the two question 
marks stand for two default-completed jollies "a" and "cui"). Only one jolly ("cui") was 
present in the uttered sentence, but the recognized sentence is considered correct because 
the parser cannot discriminate between the two sentences given the information contained 
in the lattice. However, if the actual sentence was "Qual e' la regione bagnata dal Po" 
("Which is the region washed by the Po") and the recognized sentence is "Qual regione 
bagna il Po" ("Which region does the Po wash"), the recognized sentence is considered 
incorrect even if from the semantic viewpoint both ask for the same information and 
would give rise to the same answer. 

A final difficulty is the following: in order for any type of measure to make sense, 
the degree of freedom with which words can follow one another must be given. In other 
words, it is needed a measure of the coverage of the language model used for the recogni­
tion/understanding activity; if the model is strict and the corresponding allowed language 
is of small size, the error rate will be lower than in the case of a wider model. Tradi­
tionally, such a measure has been based on information-theoretic principles, and has been 
represented by quantities like entropy or perplexity [36, 21]. Such quantities are satisfac­
tory and relatively simple to use when the language model is of statistical nature (such 
as n-grams or word n-tuples models) or is based on a regular' or context-free grammar; 
however, they cannot be easily extended to language models of considerable complexity 



www.manaraa.com

4.8 Experimental Results 205 

like the one employed here, and it is necessary to use equivalent measures that allow 
sufficient ease of computation at the expense of precision. 

This section is organized as follows. We first describe the way that has been followed 
to determine the language coverage, then we discuss the experimental results; a careful 
examination of error types is also presented. Next the result of the jolly treatment is 
discussed. Experiments on the optimality degree of the system are successively presented, 
with reference to the discussion contained in Sect. 4.5. The strict correlation between the 
computational load and the average score of the sentence (or of the score of the worst 
word hypothesis) is also shown in this section. Finally, some specific causes of errors, 
crucially depending on some system parameters, are described in detail and the trade-off 
between their elimination and the increase of average computational load is discussed. 

4.8.1 General Performance Results 

The coverage of the language model 

There are several difficulties that make the concept of perplexity inapplicable for the 
determination of the coverage of the language model employed in this system. First, the 
model does not take into account the probabilities of the different sentence constituents, 
but only discriminates admissible phrases from inadmissible ones. Then assumptions 
should be made on how probabilities would have to be distributed in order to obtain a 
meaningful measure. Alternatively, perplexity could be computed starting from quantities 
like maximum entropy; however, the derivation of maximum entropy requires knowledge of 
the number of sentences of any length [36]; now, apart from the fact that the model allows 
in principle sentences of infinite length and therefore some adjustments to the derivation 
method should be made in order to take account of this fact, the computation of such 
numbers is extremely heavy because of the constraints, of both syntactic and semantic 
nature, that relate even distant words in consequence of the particular formalisms used 
in the system. 

A pragmatic approach has therefore been followed in order to evaluate the language 
coverage. The goal of the computation was the average branching factor of the hypo­
thetical tree resulting from the union of the derivation trees of all the sentences allowed 
by the language model. (Under some assumptions, its meaning is comparable to that of 
perplexity.) Since it would be too computationally expensive to obtain such a tree explic­
itly, because of the long-distance constraints reminded above, the computation proceeded 
in two consecutive phases. In the first one, a relaxed version of the language was used, 
which does not include long-distance constraints. The average branching factor of this 
relaxed language was computed. Then, an experimental phase allowed a measurement of 
the extent to which the actual language prunes the relaxed one; this was done by ran­
domly selecting sentences allowed by the relaxed language and testing if they were also 
allowed by the actual one. Such a measure, suitably averaged on the sentence lengths, 
permitted us to obtain a correction factor on the branching factor of the relaxed language 
and eventually to determine the branching factor for the actual language. The resulting 
value was about 35. 



www.manaraa.com

206 4 The Understanding Algorithms 

Recognition Correct Failures % Average 
algorithm identification Resources Missing Gap Overlap Better~lcored Non Total number or 

rate % words sentence optimality Dis 
l-atep VIT 78 0 4 5.5 5.5 5.5 1.5 22 357 
l-atep FORW 78 1.5 7 2.5 3.5 5 2.5 22 250 
2-step VIT 77 1 8 4 1 7 2 23 331 
2-atep FORW 79 1 8 3 1 5.6 2.6 21 238 

Table 4.1: Experimental results - 1st phase 

Performance results 

Performance results are given in terms of correct sentence recognition/understanding rate, 
as specified above. We recall that by "correctly recognized sentence" we mean a sentence 
that is composed of the words which were actually uttered, except from short functional 
ones. 

A first program of experimentation was carried out in order to evaluate the under­
standing algorithm on a large set of lattices as well as to assess the relative advantages of 
different methods used at the recognition level. Four recognition procedures were tested 
in the course of the experiments; about 80 lattices per procedure (speaker dependent) 
were parsed and the result of each parsing were analyzed in detail. The four recognition 
methods were 1) VIT, I-step (use of Viterbi decoding algorithm, and no word preselection 
- i.e. the lattice is produced in a single step from the vector-quantized data); 2) VIT, 
2-step (Viterbi de~oder and word preselector, i.e. recognition is performed in 2 steps); 3) 
FORW, I-step (Forward decoding algorithm, no word preselection), and 4) FORW, 2-step 
(Forward decoding and word preselection). The parser used a language model covering 
about 700 words and the equivalent branching factor was about 35. 

Results are summarized in Table 4.1. The rate of successful sentence recognition/und­
erstanding is around 78%, about the same for the four types of recognition algorithms, 
which places the system well in the state-of-the-art. However, there are considerable 
differences when efficiency is taken into consideration. Efficiency at the parser level is 
represented by the average number of DIs generated during an analysis. The data show 
that the FORW algorithm permits the parser to save about 1/3 of computational activ­
ity. There is no definite evidence that using the 2-step algorithm instead of the I-step 
produces similar benefits, though of course the 2-step algorithm increases efficiency at 
the recognition level. For these reasons, only the FORW algorithm was used in the final 
experimentation program. 

The failures were partitioned into six classes, according to their causes: resources, 
referring to excessive time required for parsing, missing correct words in the lattice, ex­
cessive gaps and excessive overlaps between words, better-scored consistent wrong sen­
tences and finally errors due to the non-optimality of the strategy. The distribution varies 
significantly in relation to the recognition algorithm. Variations are in accordance with 
expectations. For instance, the 2-step algorithm appears to be proner to lose words than 
the I-step one. The FORW algorithm is clearly better able to spot words than VIT, as it 
is seen from the reduction in failures due to gaps and overlaps. 

Trying to overcome the causes of failure implied confiictirrg requirements. The sub­
optimal parsing strategy used in the experiments occasionally prevents a correct partial 



www.manaraa.com

4.8 Experimental Results 207 

parse from growing, and lets other parses come to a complete but wrong interpretation. 
These events are kept rare while sub optimality offers a considerable gain in efficiency. 
The flexibility of the understanding stage has permitted some adjustments to be per­
formed on the operator application, so as to better exploit adjacency constraints during 
the backward parsing steps. 

Failures due to gaps and overlaps could be overcome simply by relaxing the thresholds. 
For instance, raising the gap threshold by 1/3 reduces the failures in the I-step VIT 
algorithm from 7 to 2. However, this would also increase the combinability of word 
hypotheses, worsening efficiency and raising the probability that incorrect but better­
scored interpretations are found first. Besides, relaxed thresholds would be redundant 
in general, since the occurrences of big gaps and overlaps are somewhat rare and mainly 
related to special inter-word phonetic phenomena. A promising approach would then 
consist in taking into account such phenomena at the parsing level. 

The understanding system used for the above experiments was the version existing 
at the beginning of 1988, in which the KS had been defined 'by hand' since the compiler 
of dependency rules and conceptual graphs was not yet available. During 1988 and 1989 
a new version of the system was produced. For this system the knowledge bases are 
automatically produced by the compiler; in addition, while the first version was written 
in LISP on a SYMBOLICS, the final version is written in C and is running on a SUN-4 
workstation. Of course the LISP parser has not simply been translated into C but has been 
redefined, still maintaining the overall organization described here. The main differences 
concern the internal structures used to represent phrase hypotheses, the way to represent 
morphological, syntactic and semantic constraints (mainly coded using bit-positions) and 
the procedures for constraint propagation and checking. 

Nevertheless, in the final version some adjustments on the parsing process have been 
done. They basically consist in a limitation of the subgoaling operator applicability, de­
pending on the characteristics of the slot boundary relative to the goal to which the 
operator should be applied. Recently a new experimentation has been performed, using 
a set of 210 lattices, each one pertaining a different sentence, produced using only the 
I-step FORW recognition algorithm. Results indicate a correctness rate of 88.5% and an 
average number of generated DIs of about 280. The most relevant result given by the 
change of the programming language and machine is the drastic reduction of the average 
parsing time: from about 40 seconds to 2-3 seconds. 

4.8.2 Performance of the Short Word Treatment 

The experimental results relative to the short word treatment described in Sect. 4.7 were 
obtained at the end of the first experiment program and refer to the I-step VIT and 
FORW recognition methods (see also Table 4.1). A limited subsequent experimentation, 
performed with the latest version of the understanding stage, indicated a limited improve­
ment over the data shown here; however, the discussion we present for the data obtained 
in the first experiment program are still valid on the whole. 

Table 4.2 shows the number of jolly words that have been skipped by the parser and 
the number of jollies actually missing in the corresponding original lattices. This latter 
figure clearly shows the relevance of the problem: nearly 2/3 of the auxiliary verbs and 
more than 1/4 of the articles are not recognized on the average. Table 4.2 also shows that 



www.manaraa.com

208 

Parsed 
sentences 

Original 
lattices 

4 The Understanding Algorithms 

aux. I pran.\ prep. I ~rt.\ 
verbs 

skipped 26 27 57 90 I 
present 13 1 18 0 \ 

mzssmg 24 5 9 25 I 
present 15 23 66 65 I 

Table 4.2: Jolly word detection. 

mlssmg I 

12 jolly words 11 3 
per sentence i I I 

n. of 140 18 4 
, sentences 

successfully 35 15 3 
parsed 
average n. of 318 440 563 
generated DIs 

Table 4.3: Successful parsing 

refl'l 
markers 

111 
0\ 

01 
111 

the number of skipped jollies is higher than the number of jollies missing in the lattice, 
indicating that many words, albeit present, have been discarded by the operator jverify 
because of their bad acoustic scores or their scarce contribution to constraint propagation. 

The most relevant advantage of the short word treatment is the dramatic increase of 
the number of sentences that can be analyzed successfully. Table 4.3 displays the number 
of lattices, corresponding to the sentences containing at least one word of jolly type, in 
which at least one of such words is missing. It is seen that about 75% of them have 
been successfully understood. This figure does not change substantially as the number of 
missing jollies per sentence increases, and hence indicates robustness. The computational 
load, given by the number of generated DIs, is somewhat affected by the number of 
missing jollies. However, this is mainly due to the fact that sentences with many jollies 
are also longer and syntactically complex. The actual efficiency can be better estimated 
from Fig. 4.36, where the average number of generated DIs is plotted as a function of the 
threshold on the width of the jolly temporal 'hole'. (In practice, the width of the whole, 
that should be defined by sj, is made 'fuzzy' by the presence of the tolerance on gaps Ed. 

Thus, the values on the abscissa in Fig. 4.36 are actually given by sj + Ed to take gap 
tolerance into account.) The figure displays also the amount of parsing failures related to 
jolly problems (failures due to other reasons have been ignored for simplicity). The curve 
indicates that raising the threshold (8j) does not change much the number of generated 
DIs (the relative oscillations of the values are small). This means that the relaxation of 



www.manaraa.com

4.8 Experimental Results 

AVERAGE NUMBER 
OF GENERATED ola 
(RELATIVE UNITS) 

0.85 

5 10 15 

_ola 

0--0 INCORRECT % 

20 25 30 

PERCENTAGE OF 
INCORRECT 
UNDERSTANDING 

35 

100% 

75% 

25% 

THRESHOLD ON 
HOLE WlDTH 
(TIME FRAMES) 

Figure 4.36: Performance vs. width threshold 

209 

constraints during the application of jverify is not a source of inefficiency. Moreover, there 
is a large range of values for which the parsing failure rate remains low. 

The curve also shows that relaxing constraints may even speed up the parsing. This 
can be easily explained. When the threshold is low, no jolly is skipped, and failure occurs 
when jollies are missing from the lattice. When the threshold is raised, skipping begins 
to work: good-scored false jollies are no more a source of disturbance, and correct but 
bad-scored jollies are skipped, thus avoiding delaying the parsing; as a consequence the 
overall number of DIs decreases. Further enlarging the threshold reverses this tendency, 
since the too-much-relaxed constraints allow the aggregation of words that would have 
been discarded with stricter constraints; failures occur when one of such aggregations 
makes up a complete parse scoring better than the correct one. 

In conclusion, experiments show that the presence of jolly slots solvable as described 
above, besides permitting successful analysis of a much greater quota of word lattices, 
also speeds up parsing by preventing it from being misled by false jollies. This well 
compensates for the growth of inferential activity due to the relaxed temporal constraints 
in the DIs containing 'holes'. 

This is a novel improvement over systems that, to our knowledge, only admit one 
single skippable word and use a more rigid linguistic knowledge representation [38] or 
recognize any configuration of missing words but do not distinguish cases in which the 
information content of an absent word can be ignored [18]. An attractive feature of 
the present parsing technique is that the KS activities are modularized into a set of 
operators. Consequently, it remains open to 'local' improvements on single operators 
as well as to overall heuristic adjustments on the score-guided control strategy. As an 
example, the response of the predicate jolly-type of the operator jverify may be rendered 
more 'intelligent' by exploiting further information, such as estimates of the expected 
word length, that has not been taken into consideration in the present implementation. 



www.manaraa.com

210 4 The Understanding Algorithms 

3.673 

0.002 '--__________________ __ 

0.0 249.76 

ANALYSIS TIME (0) 

Figure 4.37: Best-score vs. time 

4.8.3 Optimality and Efficiency 

As was said in Sect. 4.5, optimality is a desirable feature of a parser for speech, as 
long as inefficiencies intrinsic in any optimal search strategy do not counterbalance the 
advantages offered by optimality itself. In the experiments described above, a suboptimal 
configuration has been used: it provided a considerable parsing speed-up at the expense of 
a very limited decrease in correct understanding rate. The behavior of the system in the 
suboptimal set-up can be seen in Fig. 4.37. The score of the best-score item selected at 
each cycle is plotted vs. the time at which the cycle started. If the system were thoroughly 
optimal, then the curve should be monotonically increasing. Therefore, a non-optimality 
makes the curve bend down; this happens when, starting from a DI having a certain score, 
a better (i.e. lower) scored DI is generated and selected at the subsequent cycle. Non­
optimalities appear in Fig. 4.37 as spikes, showing that the amount of non-optimality (and 
the related risk of erroneous understanding) stays low. Moreover, they tend to appear 
late in the analysis, when the solution has already been found. 

Given the shape of the above curve, it is apparent that in order to increase efficiency 
the solution should be found before the analysis enter the 'slow' region in which the 
worsening rate of the best score is low (and the curve is therefore nearly horizontal). In 
the previous sections it has been pointed out that in a thoroughly optimal analysis the 
computational load should depend on the average score of the solution, other conditions 



www.manaraa.com

4.8 Experimental Results 

GENERATED Dis 

2000 

200 

, 
• 

• 

• 
I 
i 
• 
• 

•• 
• •• 

• ..... . .. -. . .1," • •• _I .: .,.. :"1" ·1 :J:,::'. • 
· I III". . ..1 · I .. · 

I • I ••• 
• 

• • 20 ~ __________________________________________________ ~ 

10 100 1000 

SOLUTION POSITION 

Figure 4.38: Generated hypotheses vs. solution position 

211 

being equal for comparison, in a simple bottom-up analysis strategy the load depends on 
the score of the worst-scored word hypothesis making up the solution. In the suboptimal 
strategy the optimal situation is no longer reached, but the shift from it is limited. This 
is seen from Figs. 4.38 and 4.39. In Fig. 4.38 each dot represents the number of gener­
ated DIs versus the so-called solution position. The solution position is the number of 
word hypotheses in the lattice whose score is better than the average quality factor of 
the solution, and approximately represents the amount of word material that an optimal 
analyzer should treat before coming up with the solution. Figure 4.39 is similar, but the 
abscissa represents the so called worst position, i.e. the number of word hypotheses having 
a score better than the score of the worst word hypothesis that makes up the solution. 
A comparison of the two figures shows that the dependency on the worst score is weak, 
whereas the one on the solution score is stronger (this is also reflected by the correlation 
coefficients, which are about 0.3 and 0.7 in the former and latter case respectively). The 
scattering of dots in Fig. 4.38 is high because the analyzed lattices differed in other pa­
rameters beside the solution score, including the lattice density (the number of hypotheses 
per unit of score) in the high-score regions of the lattices, the number of words making 
up the solution, and the number of short words that are skipped by the parser. A more 
focused analysis was not possible since the lattices were too few to be partitioned into 
classes each having all these features nearly equal. Nevertheless, the solution position is 
so preponderant in determining the computational load that its effect is still evident in 
Fig. 4.38. 



www.manaraa.com

212 4 The Understanding Algorithms 

GENERATED Dis 

2000 • • • 
• • • • I 

200 • 

.... -.. ... . .. 
••• #Iti. • ... 

.,. • .. ", •• tC· • · ... ,: ~tt.' .. · · ., ... .., .. , .. ,. 

• • 
•• 

· ! III. • • • • • • •••• I · I. • I.· • 
• • • • 

• • 
• •• • • • • • ., • • • •• • 
• • • , .. • • • •• 
• • 

• 

20 L-____________________________________________________ ___ 

10 100 1000 

WORST-WORD POSITION 

Figure 4.39: Generated hypotheses vs. worst word position 

4.8.4 Some Specific Problems 

Not all of the problems detected during the experiment programs have been solved, of 
course. Some of them overlay complex issues in speech understanding and require long 
research so that deeper insight may be gained into them. In the following we discuss the 
extant problems through a series of example failures observed in the experiments. 

Excessive gaps and overlaps 

A typical case of error arises when two correct words are too far apart from one another or 
overlap too much. Using higher thresholds would be of no use, as remarked in Sect. 4.8.l. 
As a matter of fact, such problems generally correspond to precise phonetic conditions. 
For instance, gaps relative to word pairs in which the second word begins with a plosive 
are substantially wider than in other cases. Similarly, overlaps are wider when a word 
ends with a vowel that is also the beginning vowel of the subsequent word. However, it has 
been observed that threshold values as small as 5 frames for E. and 10 for Ed are sufficient 
to take into account all these phenomena; the majority of the failures due to excessive 
gaps or overlaps are not actually due to them. For instance, of the five failures due to 
excessive gap that have been observed in the VIT I-step and FORW I-step experiments, 
none corresponds to the case of a second word beginning with a plosive. Similarly, the 
five failures due to excessive overlap do not correspond to cases of adjacent words ending 
and beginning with the same vowel. On the other hand, the causes of failures due to 
excessive gap/overlap are not completely unpredictable. At least two regularities have 
been observed: 



www.manaraa.com

4.8 Experimental Results 213 

1. The Viterbi algorithm used at the recognition level appears to be less robust with 
regard to the Forward one as far as' the correct detection of vocalized consonants. 
Consider the couple of words "piu' lungo". In the lattices generated with the Viterbi 
decoder, the end point of the hypothesis "piu'" is always estimated to lie in the 
point where the /u/ of "lungo" actually ends, because the /1/ is not detected. As 
a consequence, the word hypotheses "piu'" and "lungo" are largely overlapping. 
Three failures in the VIT I-step experiments have been caused by this case only. 
A similar case happens with the words "quale regione", in which the /r/ is not 
detected causing the final /e/ of "quale" to extend over the first /e/ of "regione". 
On the other hand, the Forward algorithm always segments such words correctly. 
This suggests the need for a better investigation of the reasons for their respective 
weakness and robustness towards this phenomenon. 

2. The present language model does not take into account inter-word coarticulation 
phenomena. Consider for instance the sentence "Quanto e' lungo il Po". The word 
"quanto" is not generally uttered as such, but as if it were the word "quante", 
because the final /0/ is assimilated to the /e/ of the word "e'''. As a consequence, 
the word hypothesis "quanto" may be missing from the lattice or its end point may 
be incorrectly located, thus causing a parsing failure. Taking into account inter­
word coarticulations has implications at both recognition and understanding levels, 
and would require a tighter cooperation between the two corresponding subsystems. 

The other cases of gap/overlap could be best treated by adopting 'softer' ways of de­
ciding if two word hypotheses can or cannot be considered adjacent than a rigid threshold 
method can permit. A study has been carried out in which the gaps/overlaps are repre­
sented by a statistical model obtained through measures on the lattices. Whenever two 
supposedly adjacent word hypotheses have to be joined, instead of checking the adjacency 
with the threshold 'filter', the parser assigns a penalty to the overall word agglomerate 
on the basis of the observed gap/overlap and of such statistical model. Results are still 
preliminary and are partly reported in [9]. They indicate that even a simple method like 
this one can be effective. 

Non-optimality 

In the present version of the system, some non-optimal variations to the standard parsing 
algorithm are used. Let us examine two cases. 

1. One non-optimal variation involves a limitation of the application of the subgoaling 
operator. The subgoaling operator expands an empty field of a DI (i.e. a goal) 
according to the compositional part of some KSs. In the non-optimal case, the 
operator is applied only if the field is adjacent to some word hypothesis already 
present in the phrase hypothesis. This heuristic is used because it greatly improves 
the efficiency by reducing search. Of course it also may be the cause for failure; this 
happens when a correct DI is 'frozen' and incorrect DIs lead to a solution before 
the correct one is resumed. This has been experimentally proven a rare event (two 
failures in the first experiment phase). 



www.manaraa.com

214 4 The Understanding Algorithms 

2. Another non-optimal variation is the following. Whenever a complete DI is gener­
ated, it is compared to the other complete PHs referring to the same KS and, if 
it is sufficiently similar to one of them, it is 'deleted'. By 'sufficiently similar' we 
mean, in- the present condition, that the two PHs have (i) the same semantics, (ii) 
the same grammatical relation, and (iii) the same time interval. This heuristic cuts 
some PHs that would have nearly the same behavior in the future parsing steps, 
but occasionally it prevents the generation of the correct solution. Three failures on 
210 examined lattices have been caused by this heuristic. Removing it causes the 
number of generated PHs per lattice to rise by about 10% on the average, so that 
it ma.y be eliminated without excessive loss. 

Jolly words 

The parameters for the jolly word treatment (threshold sj, classification of jollies into 
short, long and unknown, see Sect. 4.7) have been optimized in the last experiment phase. 
Still 5 lattices out of about 200, however, are not parsed correctly because the threshold 
sj for default solving is too low. It has been experimentally proven that raising such 
thresholds from the present value would increase the number of failures by allowing the 
generation of wrong but better-scored sentences with large 'holes' in them. 



www.manaraa.com

Bibliography 

1. P. Baggia, M. Poesio: "Using conceptual graphs in the development of knowledge 
bases". Thesis extract, unpublished 

2. D. Bigorgne, A. Cozannet, M. Guyomard, G. Mercier, L. Miclet, M. Querre, J. 
Siroux: "A versatile speaker dependent continuous speech understanding system". 
Proc. of the ICASSP '88, pp. 303-306, New York, NY, Apr. 1988 

3. P.G. Bosco, E. Giachin, G. Giandonato, G. Martinengo, C. Rullent: "A parallel 
architecture for signal understanding through inference on uncertain data". Proc. of 
PARLE - Parallel Architectures and Languages Europe, Eindhoven, The Netherlands, 
June 1987, Springer-Verlag, Lecture Notes in Computer Science, vol. 258, pp. 86-102 

4. R. Brachman, J. Schmolze: "An overview of the KL-ONE knowledge representation 
system". Cognitive Science, vol. 9, pp. 171-216, 1985 

5. A. B'rietzmann, U. Ehrlich: "The role of semantic processing in an automatic speech 
understanding system". Proc. of COLING '86, pp. 596-598, Bonn, Fed. Rep. Ger­
many, Aug. 1986 

6. R. Comino, R. Gemello, G. Guida, C. Rullent, L. Sisto, M. Somalvico: "Understand­
ing natural language through parallel processing of syntactic and semantic knowledge: 
an application to data base query". Proc. of the 8th /JCAI, pp. 663-667, Karlsruhe, 
Fed. Rep. Germany, Aug. 1983 

7. J. Courtain: "Algorithmes pour Ie traitement interactif des languages naturelles". 
These, Universite' Scientifique et Medicale de Grenoble, Grenoble, France, 1977 

8. M. Danieli, F. Ferrara, R. Gemello, C. Rullent: "Integrating semantics and flexi­
ble syntax by exploiting isomorphism between grammatical and semantic relations" . 
Proc. of the 9rd Con/. of the Europ. Chapter of the ACL, pp. 278-283, Copenhagen, 
Denmark, Apr. 1987 

9. M. De Mattia, E. Giachin: "Experimental results on large vocabulary continuous 
speech understanding". Proc. of the ICASSP '89, pp.691-694, Glasgow, UK, Apr. 
1989 

10. L.D. Erman, F. Hayes-Roth, V.L. Lesser, D. Raj Reddy: "The Hearsay-II speech­
understanding system: integrating knowledge to resolve uncertainty". Computing 
Surveys, vol. 12, pp. 213-253, June 1980 



www.manaraa.com

216 Bibliography 

11. C.J. Fillmore: "The case for case". Bach, Harris (eds.): Universals in Linguistic 
Theory. Holt, Rinehart, and Winston, New York, 1968 

12. L. Fissore, E. Giachin, P. Laface, G. Micca, R. Pieraccini, C. Rullent: "Experimen­
tal results on large-vocabulary speech recognition and understanding". Proc. of the 
ICASSP '88, pp. 414-417, New York, NY, Apr. 1988 

13. R. Gemello, E. Giachin, C. Rullent: "A knowledge-based framework for effective 
probabilistic control strategies in signal understanding". Proc. of GWAI '87, pp. 104-
113, Sept. 1987 

14. E. Giachin, C. Rullent: "A control strategy for a knowledge-based approach to sig­
nal understanding". Proc. of the 4th Esprit Technical Week, pp. 836-849, Bruxelles, 
Belgium, Sept. 1987 

15. E. Giachin, C. Rullent: "Robust parsing of severely corrupted spoken utterances". 
Proc. of COLING '88, pp. 196-201, Budapest, Hungary, Aug. 1988 

16. E. Giachin, C. Rullent: "A parallel parser for spoken natural language" . Proc. of the 
11th IJCAI, pp. 1537-1542, Detroit, Mich., Aug. 1989 

17. A. Giordana, P. Laface, A. Kaltenmeier, H. Mangold, R. Pieraccini, F. Raineri: 
"Algorithms for speech data reduction and recognition". Proc. of the 2nd Esprit 
Technical Week, pp. 845-853, Brussels, Belgium, Sept. 1985 

18. G. Goerz, C. Beckstein: "How to parse gaps in spoken utterances". Proc. of the 1st 
Conf. Europ. Chapt. ACL, 1983 

19. P.J. Hayes, A.G. Hauptmann, J.G. Carbonell, M. Tomita: "Parsing spoken language: 
a semantic caseframe approach". Proc. of COLING '86, pp. 587-592, Bonn, Fed. Rep. 
Germany, Aug. 1986 

20. D.G. Hays: "Dependency Theory: a formalism and some observations". Memoran­
dum RM4087 P.R., The Rand Corporation, 1964 

21. F. Jelinek, R.L. Mercer, L.R. Bahl, J.K. Baker: "Perplexity - a measure of difficulty 
of speech recognition tasks". 94th Meeting of the Acoustical Society of America, 
Miami Beach, FL, 1977 

22. P. Laface, G. Micca, R. Pieraccini: "Experimental res11lts on a large lexicon access 
task". Proc. of the ICASSP '87, pp. 809-812, Dallas, Tex., Apr. 1987 

23. A.L. Lepschy, G. Lepschy: La lingua italiana. Bompiani, Milano, 1986 

24. L. Lesmo, P. Torasso: "Weighted interaction of syntax and semantics in natural lan­
guage analysis". Proc. of the 9th IJCAI, pp. 772-778, Los Angeles, CA, Aug. 1985 

25. F. Kubala et al.: "Continuous speech recognition results of the Byblos system on 
the Darpa 1000-Word Resource Management Database". Proc. of the ICASSP '88, 
pp. 291-294, New York, NY, Apr. 1988 



www.manaraa.com

Bibliography 217 

26. W. Mann (chairperson): "Text generation". American Journal of Compo Linguistics, 
vol. 8, no. 2, 1982 

27. L.G. Miller, S.E. Levinson: "Syntactic analysis for large vocabulary speech recogni­
tion using a context-free covering grammar". Proc. of the ICASSP '88, pp 271-273, 
New York, NY, Apr. 1988 

28. H. Ney, D. Mergel, A. Noll, P. Paeseler: "A data-driven Organization of the dynamic 
programming beam search for continuous speech recognition". Proc. of the ICASSP 
'87, pp. 833-836, Dallas, TX, Apr. 1987 

29. G.T. Niedermair: "Merging acoustics and linguistics in speech understanding". Proc. 
of the NATO ASI Conference, pp. 479-484, Bad Windsheim, Fed. Rep. Germany, July 
1987 

30. M. Poesio, C. Rullent: "Modified caseframe parsing for speech understanding sys­
terns". Proc. of the 10th IJCAI, pp. 622-625, Milano, Italy, Aug. 1987 

31. J.R. Rohlicek, Y.L. Chow, S .Roucos: "Statistical language modeling using a small 
corpus from an application domain". Proc. ICASSP '88, pp. 267-270, New York, NY, 
Apr. 1988 

32. R. Schank: Conceptual Information Processing. North-Holland, New York, 1975 

33. R.F. Simmons: Computations from the English. Prentice-Hall, 1984 

34. A.R. Smith, L.D. Erman: "Noah - a bottom-up word hypothesizer for large­
vocabulary speech understanding systems". IEEE Trans. on Pattern Analysis and 
Machine Intelligence, vol. 3, pp. 41-51, Jan. 1981 

35. N.K. Sondheimer, B.Nebel: "A logical-form and knowledge-base design for natural 
language generation". Proc. of the AAAI '86, pp. 612-618, Philadelphia, PA, Aug. 
1986 

36. M.M. Sondhi, S.E. Levinson: "Computing relative redundancy to measure grammat­
ical constraint in speech recognition tasks". Proc. of the ICASSP '78, pp. 409-412, 
Tulsa, OK, Apr. 1978 

37. J.F. Sowa: Conceptual structures. Addison Wesley, Reading, MA, 1984 

38. M. Tomita: "An efficient augmented-context-free parsing algorithm". Computational 
Linguistics, vol. 13, pp. 31-46, Jan.-June 1987 

39. M. Tomita, J .G. Carbonell: "The universal parser architecture for knowledge-based 
machine translation". Proc. of the 10th IJCAI, pp. 718-721, Milano, Italy, Aug. 1987 

40. M. Weintraub, H. Murveit, M. Cohen, P. Price, J. Bernstein, G. Baldwin, D. Bell: 
"Linguistic constraints in Hidden Markov Model based speech recognition". Proc. of 
the ICASSP '89, pp. 699-702, Glasgow, UK, Apr: 1989 



www.manaraa.com

218 Bibliography 

41. T. Winograd: Language as a Cognitive Process, Vol. 1. Addison-Wesley, Reading, 
MA,1984 

42. W.A. Woods: "Optimal search strategies for speech understanding control". Artificial 
Intelligence, vol. 18, pp. 295-326, May 1982 



www.manaraa.com

Chapter 5 

Implementation of a Parallel Logic + Functional 
Language t 

Gian Paolo Balboni, Piergiorgio Bosco, Carlo Cecchi, Riccardo Melen, 
Corrado Moiso, Giorgio Sofi (CSELT) 

5.1 Overview 

This chapter presents the main features of the integrated logic plus functional languages 
IDEAL and K-LEAF along with their implementation on sequential and parallel archi­
tectures. 

Our approach to integration is based on two levels [4]. The upper level is ID EAL (an 
Ideal DEductive and Applicative Language), a higher-order logic plus functional language 
[5] designed in order to offer in a unified coherent environment the most appealing fea­
tures of Prolog and of modern functional languages: full invertibility, non-determinism, 
higher-orderness, lazy evaluation and type structures. The huge gap between the powerful 
computational model of IDEAL and the quite simple structure of the low-level underlying 
abstract machine is filled through a two-step compilation process: 

1. an IDEAL program is transformed into a flat set of K-LEAF clauses. K-LEAF [6] 
is a well-founded first-order logic-functional language whose execution mechanism, 
based on SLD-resolution, provides a complete and efficient conditional equation 
solver, equivalent to conditional narrowing [8]. 

2. A K-LEAF program is compiled into K-WAM, a parallel extension of the WAM 
devised to efficiently implement the outermost resolution strategy (so as to achieve 
conditional narrowing and fully invertible lazy evaluation of functional calls). 

The description of our parallel testbed PIPES (Packet Interconnected Processing Ele­
mentS) concludes the chapter. 

tReprinted by permission of John Wiley & Sons, Ltd., from the book: Parallel Com­
puters. Object-Oriented, Functional, Logic. Ed. P. C. Treleaven, Copyright (@1990 by 
John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, POl9 IUD, UK). 



www.manaraa.com

220 5 Implementation of a Parallel Logic + Functional Language 

5.2 Applications 

The need for better ways to force computers to do exactly what we have in mind is still 
felt in the programming community. Even though, mainly for portability reasons, low­
level imperative implementation languages (like C or parallel-C) are considered by many 
people the ultimate °answer to the problem, we don't feel we are living in the "best possible 
world" and hope that an evolution will always be possible here as in any other scientific 
discipline. Our experience mainly comes from the world of complex real-time telecommu­
nication systems, where typical code for call handling is more and more integrated with 
code implementing special services, such as speech access to information databases, intel­
ligent network supervision and reconfiguration. The latter applications, as well as others 
of our interest, like robotic vision, require complex AI algorithms, which once prototyped, 
with substantial effort, in a conventional sequential environment, must be accelerated by 
one or two orders of magnitude to achieve the real-time performance. Therefore suitable 
linguistic tools should be available to ease both the early specification phase (by providing 
powerful structuring and control constructs, and reducing the possibility of introducing 
errors) and the move to parallel architectures in order to speed up the execution without 
complete reprogramming. 

Our position is that declarative logic and functional languages are good candidates 
for such a role, being a good compromise between formal simplicity, expressive power, 
suitability for parallel execution and the possibility of optimization in order to approxi­
mate the efficiency of "normal" imperative languages. All of these targets have not been 
achieved yet, but the incoming results seem to suggest that all the technical problems can 
be solved soon. This position is not in contrast with the trend in "practical programming 
environments" towards the use of "fourth generation" languages, or application generators 
and expert system builders. Our impression is that such tools, which are emerging in a 
somewhat uncontrolled way (sometimes too complex and with unclear semantics), could 
be rephrased in a more compact and sound way in logic-functional languages (provided 
that a more appealing syntax than the bare mathematical one is offered to the user). 

5.3 Languages 

5.3.1 The Language K-LEAF 

The K-LEAF syntax is based on Horn Clause Logic with Equality, extending pure Prolog 
in order to express non-terminating conditional term rewriting systems with constructors. 
Given a set V of variables, C of constructors, F of functions and P of predicates, a K-LEAF 
program consists of a set of clauses whose syntax is defined by the following grammar: 



www.manaraa.com

5.3 Languages 

Clause 
Body 
Term 
Data-term 
Atom 

Head 

.. -

.. -

.. -

.. -

.. -

Head :- Body. / Head. 
Atom / Atom, Body 
x / k(Term, ... ,Term) 
x / c(Data-term, ... ,Data-term) 
p(Term, ... ,Term) / 
Term == Term 

.. - f(Data-term,.,.,Data-term)=Term / 
p(Data-term, ... ,Data-term) 

:z: E V and k E C u F 
:z: E V and c E C 
pEP 

fEF 

pE P 

221 

relational atom 
strict-equality test 
functional head 
relational head 

no multiple occurrences of the same variable in the head arguments, 

in functional heads var(rhs) is included in var(lhs) 

In order to guarantee confluency in function definition, the following additional con­
straint must be satisfied by a K-LEAF program: for each pair of functional heads of the 
form f(d1, ... ,dn) = t and f(d1', ... ,dn') = t', (d1, ... ,dn) and (d1', ... ,dn') are not 
unifiable. The clause f(d) = t :- b. means that f(d) can be reduced to t if b is true 
(i.e. has a refutation). A K-LEAF goal is a conjunction of atoms (either relations, as in 
Prolog, or equations between terms) to be proved with respect to a program. An equa­
tion of the form t == R, where t is ground (i.e. there are no occurrences of variables) and 
R is a variable, represents the evaluation of t to its normal form to which R will be bound. 

The following set of clauses is a correct K-LEAF program: 

plus(O,x)= x. 
plus(s(x),y) = s(plus(x,y)). 
nat(x) = cons(x,nat(s(x))). 
odd( cons(x,cons(y,z))) = cons(x,odd(z)). 
sqrlist=cons( O,sqrlist1( O,odd( nat( s(O))))). 
sqrlist 1 (x,cons(y,z)) = cons(plus( x,y ) ,sqrlist 1 (pI us( x,y) ,z)). 
p(x,y,z) :- p1(x,y,z,sqrlist). 
p1(x,y,z,w) :- sqr(z,w) == plus(sqr(x,w),sqr(y,w)). 
sqr(O,cons(x,y)) = x. 
sqr(s(x),cons(y,z)) = sqr(x,z). 

The example defines some non-terminating functions, such as nat (the list of naturals), 
sqrlist (the list of squares), odd(s(O)) (the list of odd numbers): these infinite functions 
can be handled because of the non-strict (i.e. lazy) semantics of K-LEAF [6J; the relation 
p(;r, y, z) denotes all the triples < ;r, y, z >, such that: ;r2 + y2 = z2. Possible goals (along 
with their answers) are: 

7- p(x,s(y),z). 
7- plus(s(s(O)),s(O)) == r 

7- plus(s(s(O)),s(x)) == s(s(s(O))) 

x = y := s(s(s(O))) z := s(s(s(s(s(O))))) ; ... 
r := s(s(s(O))) 

x:= ° 



www.manaraa.com

222 5 Implementation of a Parallel Logic + Functional Language 

5.3.2 The Language IDEAL 

From the syntactic point of view IDEAL extends K-LEAF with the possibility to handle 
)..-abstractions, for the definition of higher-order functions/predicates. Moreover, the 
programs are constrained to be well typed with respect to a polymorphic type system [31]. 
The previous abstract K-LEAF syntax is enriched with the following rules: 

Term .. - Term where Program / local definitions 
Term @ Term / functional application 
A (Abstr) A-abstraction 

Abstr .. - Data-term.Cond-term / Data-term.Cond-term ; Abstr defini tion by cases 
Cond-term .. - Term / Term :- Body / :- Body 
Atom .. - Term @ Term. curried atom 

As syntactic sugar, a clause of the form: f = )..(Z1.)..(Z2 .... )"zn.ezpr) ... )). n ~ 1 can be 
written as: f@ Z1 @Z2@ ... @ Zn = ezpr. 

Along with predefined constructors (for lists, numbers, etc.), new constructors can 
be introduced via polymorphic type declarations like the following one, which defines the 
type tree along with the associated constructors leaf and node: 

tree(X) ::= leaf(X) ; node(X,tree(X),tree(X)). 

The following example of functional program taken from [37] is a good introduction 
to the syntax of the functional subset of IDEAL (the type information inferred by the 
system is listed after the ":" symbol). 

foldr @ Op@ Z = g 
where g@ [] = Z. 

g @ [A I X] = Op @ (A, g @ X). :(a#(3 -+ (3) -+ (3 -+ (list(a) -+ (3). 

An alternative definition of foldr (where the local definition g is replaced by a )..­
abstraction) is: 

foldr @ Op @ Z = )..[] . Z; [A I X].'Op @ (A, foldr @ Op @ Z @ X)). 

product = foldr @ (*) @ l. 
sum = foldr @ (+) @ o. 
?- sum @ [1,2,3] == R. 

:list(int) -+ into 
:list( in t) -+ int. 
R:= 6 

Definitions of predicate combinators and lexically scoped predicate definitions are 
possible. This greatly improves conciseness and modularization of logic programs: 

comb @ P @ (X,Y) :- P @ (Z,X),P @ (Z,Y). 

non-disjoint = 
where 

:(a#(3 -+ truth-value) -+ (3#(3 -+ truth-value. 

comb@member. 
member@ (X,[X I L]). 
member@ X,[Y I L]) :- member@(X,L) 

:list(a) # list (a) -+ truth-value. 



www.manaraa.com

5.3 Languages 223 

person ::= (a;b;c;d; ... ). % declares type person 

brothers = comb@parent 
where parent@(a,b). 

parent@(c,d). :person # person ---- truth-value. 

where non-disjoint succeeds when two lists are not disjoint, while brothers succeeds 
when its two arguments have a common parent. 

5.3.3 Parallel IDEAL and K-LEAF 

Due to their declarative nature, logic and functionallanguages are widely recognized as 
good candidates for a "natural" move from sequential programming of algorithms to the 
situation where several processing elements can be made to cooperate in parallel for the 
solution of a problem. We deliberately exclude here, although they are very important, 
other aspects of parallel/concurrent programming typical of embedded systems, where the 
program must cope with "simultaneous" and "continuous" changes of an external world. 
While the latter scenarios require real concurrency, i.e. at least some explicit notions at 
the user language of merging or synchronization, in the first case it is just a matter of 
programming style to introduce or not an explicit notion of parallelism. 

With logic and/or functionallanguages we can, at least in principle, exploit the sources 
of parallelism already implicitly present in their operational semantics (based on resolu­
tion or on reduction), with no need of explicit constructs to spawn/synchronize parallel 
computations. A first consequence of this fact is that the same semantic characterization 
fits both the sequential and the parallel versions of such languages: concepts like logic 
consequence, computed substitution answer, resolution step, normal form, rewriting step 
are independent of the (sequential/parallel) way they are proved or computed. 

The computational model of logic languages suggests two aspects that can, in princi­
pIe, be handled concurrently, the search rule (OR-parallelism) and the computation rule 
(AND-parallelism) used to implement SLD-resolution. OR-parallelism introduces the 
possibility of performing in parallel all possible resolutions of the selected atom against 
the set of clauses defining it. AND-parallelism is related to the use of parallelism in 
the computation rule: two or more atoms in a goal can be resolved in parallel. On the 
other hand, the computational mechanism of functional languages, i.e. reduction, can 
be applied in parallel to different redexes in a term. As will be explained in detail in 
the following sections, we adopted (a version of) SLD-resolution on flattened programs as 
a uniform computational mechanism for our integrated logic+functionallanguages: this 
implies that in our case, OR-parallelism is essentially similar to that in logic languages, 
while AND-parallel execution of atoms derived from flattening of functional nestings into 
functional atoms is equivalent to parallel functional reduction. 

The main problem in designing parallel algorithms is to achieve the "right" balance of 
parallel vs. sequential execution according to the actual features of the physical machine, 
such as number and power of processors, throughput and latency of the network. Several 
things are needed for a good compromise. On one side we have to guarantee enough 
parallelism for exploiting the processing power. On the other side we must ensure that 
each process has a suitable lifetime to compensate the overhead due to process creation and 
communication. The first constraint should primarily be solved by designing inherently 



www.manaraa.com

224 5 Implementation of a Parallel Logic + Functional Language 

parallel algorithms (for example, quicksort is "more" parallel than standard bubblesort). 
The declarative and symbolic nature of logic and functional languages encourage the 

development of divide-and-conquer and search-based programs with great potential for 
parallelism. Other program analysis and transformation techniques, such as abstract 
interpretation [14], and partial evaluation, can further increase the degree of exploited 
parallelism without resorting to speculative parallelism (i.e. parallel evaluation of sub­
problems which are not guaranteed to eventually contribute to the solution of the overall 
problem, e.g. parallel evaluation of both branches of if-then-else) which is usually more 
difficult to manage. In many cases the resulting fine granularity of potential parallelism 
does not fit the second constraint. A way to fix larger sequential parts of computation 
is needed. This can hardly be achieved by automatic tools. Our choice was to leave 
to the programmer such a responsibility, by providing him/her with simple annotations 
which characterize sequential and parallel parts: thus, our approach to parallelism could 
be called controlled implicit parallelism. The two forms of parallelism in IDEAL/K-LEAF 
are controlled in the following way: 

• OR-parallelism: we must declare the procedures (i.e. function or predicate defi­
nitions) whose activations must be resolved in an OR-parallel way (in the current 
implementation of the language OR-parallel annotation is achieved by prefixing 
parallel procedures with $) . 

• AND-parallelism (for parallel functional computations, through flat SLD-resolution): 
annotations on functional calls (with the form f( ... )/ /) denote that the resolution 
of the corresponding functional atoms must be performed by AND-parallelism. 

As a simple example let us consider the IDEAL program: 
sumJist([],F) = O. 
sumJist([E I L],F) = F @ E+sumJist(L,F). 

$goal(L,R) :- sumJist(L,f) == R. 
$goal(L,R) :- sumJist(L,g) == R. 

f@X = long_computation(X). 
g@X = shorLcomputation(X). 
A reasonable parallel modification of the program could be: 

sumJist([],F) = O. 
sumJist([E I L],F) = (F@E)//+sumJist(L,F)/;' 

sumJist..seq([],F) = O. 
sumJist..seq([E I L],F) = F@E+sumJist_seq(L,F). 

$ goal(L,R) :- sumJist(L,f) == R. 
$ goal(L,R) :- sumJist..seq(L,g) == R. 

f@X = long_computation(X). 
g@X = short_computation(X). 

Here $goal has to be executed by OR-parallelism; due to the "complexity" of f it is 
worthwhile to generate an AND-process for each application of f to a list element, while, 
for g, we estimate that sequential execution is better. 



www.manaraa.com

5.4 Models of Computation 225 

The IDEAL parallel procedures are translated into equivalent K-LEAF parallel pro­
cedures (see next sections). At the K-LEAF level additional constraints are put on the 
interaction among the OR-parallel part and the sequential one (executed by backtrack­
ing) in order to enable a better programmer intuition about the evolution of the parallel 
computation and to guarantee efficiency in sequential execution. Along with the static 
distinction between OR-parallel and sequential procedures (a procedure is a set of clauses 
defining the same predicate/function), this discipline imposes that a sequential procedure 
cannot directly invoke an OR-parallel one, but this interaction should take place only 
through a parsetof construct, an OR-parallel version of the built-in Prolog predicate 
set of. Moreover a parallel procedure can access the sequential component through an 
all-solutions construct (denoted by { ... })j its related semantics is: first, all the solutions 
of the sequential goal are computed in a backtracking way, and, then, as many OR-parallel 
processes as the computed solutions are spawned to resolve the continuation. 

app([),L2) = L2. 
app([E I Ll,L2]) = [E I app(Ll,L2)]. 

$rev( [I) = II· 
$rev([E I LI) = app($rev(L),[E]). 

g(Ll,S) :- parsetof($rev(L2) = Ll, L2, S). 

• $rev is a parallel function, while app, and g are sequential functions and predicatesj 

• g(LO,[R]), returns in R the list whose reverse is LO itself: if LO = [1,2,3]' then R := 
[3,2,1]j 

• a sequential call can occur in a parallel clause (e.g. app in the second clause for 
$rev), but it is implicitly embedded in an alLsolutions constructj 

• in a sequential clause, a parallel call is made by a parsetof construct (e.g. $rev in 
the clause for g). 

IDEAL and K-LEAF actually inherit the constructs to control parallelism from a 
Parallel Prolog [24] developed in CSELT, which already provides the above primitives, to­
gether with other constructs for a better control of OR-parallel process spawning (guards), 
sound communication among independent OR-parallel processes (assertion oflemmas) 
and implementation of best-first search (user-defined priorities of OR-processes). 

5.4 Models of Computation 

The computational model of IDEAL consists of two parts: 

1. a transformation to "compile" higher-order IDEAL programs into first-order K­
LEAF oneSj 

2. a resolution-based execution mechanism (complete with respect to the K-LEAF 
declarative semantics) to efficiently execute K-LEAF programs. The (parallel) vir­
tual machine for the execution of K-LEAF is described in Sect. 5.5. 



www.manaraa.com

226 5 Implementation of a Parallel Logic + Functional Language 

5.4.1 Compiling IDEAL into K-LEAF 

An IDEAL program is compiled into K-LEAF through lambda-lifting techniques for gen­
erating fully lazy supercombinators as recent compilers for functional languages [35]. In 
the logic programming framework, this technique can be seen as a partial evaluation of 
IDEAL programs with respect to given interpreter of IDEAL written in K-LEAF. As an 
example, consider the definition twice: 

twice @ F @ X = F @ (F @ X). 
plus! @ X = seX). 

The result of its partial evaluation, in presence of the IDEAL interpreter (consisting of 
a first-order axiomatization of J3-reduction written in K-LEAF), is the K-LEAF program: 

twice @ F = twicel(F). 
twicel(F) @ X = F @ (F @ X). 
plusl @ X = seX). 

where @ is an infix K-LEAF function symbol and twice1 is a new constructor gener­
ated during the process of partial evaluation. 

Lambda-lifting has been extended to cope with the aspects related to logic+functional 
integration, namely existential variables, conditions and predicates. For example, the 
IDEAL program: 

p@Z = I : -q@X,r@(Ay.X, Z). 
r@(F,X) : -F@O == X. 

is transformed into the K-LEAF program: 

p@Z = I : -q@X, r@(pl(X), Z). 
pl(X)@Y = X. 
r@(F,X): -F@O==X. 

A detailed description of the mapping of IDEAL into K-LEAF is reported in [7]. 

5.4.2 Execution of K-LEAF: Flattening and Outermost SLD­
Resolution 

The computational methods that have been proposed for the execution of languages based 
on Horn clause logic with equality are, in general, linear refinements of resolution and 
completion (i.e. SLD-resolution and narrowing, respectively). Among them we find con­
ditional narrowing [20] [23] and SLDE-resolution (i.e. SLD-resolution with syntactic uni­
fication replaced by a semantic unification algorithm [25]" [36] [29]). 

Though the operational semantics of K-LEAF is conditional narrowing, which in [6] 
has been proved equivalent to a denotational semantics, its execution mechanism underly­
ing the implementation, on the other hand, is outermost SLD-resolution on homogeneous 



www.manaraa.com

5.4 Models of Computation 227 

(also called fiat) form [6]. As described in [8] (basic- )conditional narrowing can be effi­
ciently recast into SLD-resolution on a transformed program where functional nestings are 
eliminated by recursively replacing each functional call f(tl, ... , tn) with a fresh variable 
v, named the produced variable, and adding the functional atom f(tl, ... , tn) = v in the 
antecedent of the clause: the = symbol is considered as an ordinary predicate and the 
axiom x = x is added to the transformed program. For instance, the K-LEAF program 
in Sect. 5.3.1 is transformed into: 

plus(O,x) = x. 
plus(s(x),y) = s(v) :- plus(x,y) = v. 
nat(x) = cons(x,v) :- nat(s(x)) = v. 
odd(cons(x,cons(y,z))) = cons(x,v) :- odd(z) = v. 
sqrlist = cons(O,v1) :- sqrlist1(O,v2)=v1, odd(v3)=v2, nat(s(O))=v3. 
sqrlist1(x,cons(y,z)) = cons(v1,v2) :- plus(x,y) = v1, sqrlist1(v3,z)=v2, plus(x,y) =v3. 
p(x,y,z) :- p1(x,y,z,w), sqrlist = w. 
p1(x,y,z,w) :- sqr(z,w) = v1,v1 : v2,sqr(x,w) = v3,sqr(y,w)= v4,plus(v3,v4) = v2. 
sqr(O,cons(x,y)) = x. 
sqr(s(x),cons(y,z)) = v :- sqr(x,z) = v. 

SLD-resolution on transformed programs seems to be more adequate than (condi­
tional) narrowing: 

• SLD-resolution was shown to be semantically equivalent to narrowing [8], with a 
considerable gain in efficiency (elimination of redundant solutions and, more gener­
ally, reduction of the search space); 

• the full (relational + functional) language can be supported by a single inference 
mechanism; 

• conditional equations can be easily handled, without need of extensions; 

• call-by-need is obtained for free: a functional term is evaluated at most once. 

Moreover, in spite of some independent effort in "direct" implementation of (condi­
tional) narrowing, WAM (an abstract machine for Prolog [38]) can directly support it 
without extensions. An innermost strategy can be easily realized through the usual left­
most selection rule of Prolog, as long as the literals are put in the right order by the 
transformation. But, in general, the unlimited possibility of resolving functional atoms 
with x = x has, as a serious drawback, a large amount of useless computation. From a 
theoretical point of view, the elimination of the reflexive clause causes the loss of com­
pleteness, unless functions are constrained to be everywhere-defined [23]. The introduction 
of an outermost selection strategy according to which a functional atom is resolved only 
when its produced variable would be bound to a non-variable term, eliminates all redun­
dant resolutions against x = x. As the choice offunctional atoms to resolve is dynamically 
performed (during unification), we must extend the WAM with a suspension/ reactivation 
mechanism for functional atoms (more complex than freeze [15]). 

The outermost strategy we considered for the sequential implementation, reported in 
the following section, is specified by the following rules: 



www.manaraa.com

228 5 Implementation of a Parallel Logic + Functional Language 

• all the relational atoms and strict-equality tests must be resolved: even if their 
selection order is immaterial, we adopted as default strategy for these atoms the 
left-to-right Prolog onej 

• a functional atom is resolved only if the resolution of an atom A against a clause 
H : -B requires its produced variable v (i.e. v is unified with a non-variable). To 
achieve better efficiency, through earlier detection of failures, the atoms required by 
a relational head or the lhs of a functional head are resolved before the atoms in Bj 
those required by the rhs of a functional head are evaluated immediately after Bj 

• if a produced variable does not occur in the current goal to be resolved (and, thus, 
it can no longer be required by a resolution), its producer is eliminated (elimination 
rule). 

Let us consider the following program (which is already in homogeneous form): 

1) p(I,2) :- q(O). 3) f(I)=1. 
2) q(O). 4) f(2)=1. 

and t,~e goal ?- p(f(:c),:c). transformed into ?- p(v,:c),f(:c) = v. 

The only relational atom in the goal is p(v,:c) which is resolved with (1) to obtain 
?- f(2) = 1, q(O) with the most general unifier u = {v := Ij:C := 2}j u requires the value 
of v , because it binds v to 1. The resolution of u(f(:c) = v), i.e. the producer of v, 
is performed before the resolution of the relational atom q(O) occurring in the body of 
(1). Its resolution with (4) succeeds and, then, the overall computation succeeds after the 
resolution of q(O) against (2). 

In some cases, e.g. during the resolution of strict-equality tests, the resolution of a 
functional atom is required even if the produced variable is still unbound. In these situa­
tions we want that, after the resolution of such a functional atom, its produced variable is 
bound either to a non-produced variable or to a term whose outermost functor is a con­
structor (i.e. it is in head-normal-form, hnf in the following). For sake of efficiency and 
maximization of possible parallelism, the general outermost strategy should allow "inner" 
sub-resolutions on strict arguments, i.e. those terms whose evaluation will eventually be 
required in the course of the computation. The above strategy is accordingly modified as 
follows: before the resolution of a functional/relational atom A, we must resolve (to hnf) 
all the functional atoms producing variables which are strict in A. 

5.4.3 Parallel Outermost Strategy 

In the implementation of the outermost strategy, parallelism can be exploited according to 
the parallel annotationsj during the flattening, the AND-parallel annotation is inherited 
by functional atoms from the corresponding functional call: 

• OR-parallelism: the resolution of an (OR-parallel annotated) atom $p(dl, ... , dn) 
or $f(dl, ... ,dn) = d (where di are data terms) generates as many processes as the 
unifiable clauses defining $p or Sf. Each process executes the corresponding clause, 



www.manaraa.com

5.5 Language Implementation and Execution 229 

and, if it succeeds, continues the evaluation of the goal; otherwise the process fails 
(and it is killed); 

• AND-parallelism: the synchronous AND-parallel construct and_par (see Sect. 5.5.6) 
spawns n processes to resolve n parallel atoms, and waits for their termination. 
And_par is used to evaluate in parallel arguments of a function/predicate call: be­
fore the resolution of an atom A, all the AND-parallel functional atoms producing 
variables which are strict in A are evaluated in parallel by this construct; the same 
construct can be used to resolve in parallel the AND-parallel atoms dynamically 
required during unifications. 

The fiat K-LEAF form of the IDEAL program in Sect. 5.3.3 concludes this section: 

sumlist([]'F) [J. 
sumlist([E I LJ,F) R :- and_par ( F@E=Rl, sumlist(L,F)=R2 ), 

Rl+R2 = R. 

sumlisLseq([] ,F) 
sumlisLseq([E I L],F) 

$goal(L,R) 
$goal(L,R) 

[J. 
R :- F@E=Rl,sumJisLseq (L,F)=R2, Rl+R2 = R. 

sumJist(L,f)=Rl, Rl == R. 
sumlisLseq(L,g) =Rl, Rl == R. 

5.5 Language Implementation and Execution 

In the previous section an overview of the outermost strategy was provided and it was 
pointed out that its implementation cannot be achieved only by directly compiling K­
LEAF into Prolog. This is due to the fixed left-to-right atom selection order of Prolog, 
which does not allow a convenient expression of the more complex control of computation 
needed for outermost strategy, where the choice of functional atoms to be resolved must 
be performed within the unification algorithm. Therefore, we extended (the parallel ver­
sion of) the WAM, so as to achieve a (parallel) implementation of K-LEAF. The choice 
of the WAM as a starting point for the abstract machine has been dictated not only 
by the resolution-based nature of the execution models of our integrated languages, but 
also by technological considerations: although we could re-invent a new abstract machine 
to support the logic-functional integration in the optimal abstract way, by choosing the 
WAM-approach we intended to capitalize on the extensive experience already available 
for sequential and parallel Prolog, and to be ready to incorporate all the new incoming 
optimizations. 

The WAM is art abstract machine equipped with: 

• a Code Area, containing object code (i.e. WAM instructions) produced by the 
compiler. 

• a Symbol Table, allowing dynamic linkage/loading of procedures. 



www.manaraa.com

230 5 Implementation of a Parallel Logic + Functional Language 

• a Stack, recording two kinds of information: 

1. Choice points (storing the status of the machine at the' moment of the invo­
cation of a multiple-clause procedure; that status will be restored upon back­
tracking, before starting the computation of the next alternative solution); 

2. Stack frames (storing the "environment" for the execution of the current clause, 
i.e. some control information and the bindings for logical variables (actually, 
permanent variables)). 

• a H~ap, where composite terms (i.e. structures and lists) are constructed (according 
to the so-called structure-copying technique). 

• a Trail, storing information about the bindings to be undone upon backtracking. 

• a PDL (Push Down List), used as a stack to hold operands and results of arithmetic 
instructions and also during recursive invocations of the unification algorithm. 

• some Status Registers (e.g., P, program counter; E, environment pointer, referencing 
current stack frame; B, backtracking pointer, referencing most recent choice point; 
and lastly, the X/A Register Array, used both as temporary registers for storing 
temporary variables and as argument registers for parameter passing). 

Prolog programs are compiled into WAM instructions, which can be classified into 
five groups: 

• procedural instructions allocate/deallocate frames on the stack and call/return from 
a procedure. 

• get instructions, corresponding to formal parameters of the head of the source clause, 
receive the parameters passed by the caller through argument registers and store 
them conveniently (temporary variables in temporary registers, permanent variables 
in locations of the stack frame). They define the read/write-mode for unification 
instructions, according to the instantiation state of the actual parameters. 

• put instructions, corresponding to the arguments of body atoms, load actual param­
eters of the caller into argument registers. They set the write-mode. 

• unify instructions, corresponding to the arguments of composite terms in a clause, 
are used either to build or access structures and lists, according to the read or write 
mode of execution, respectively, which is defined by get and put instructions. 

• indexing instructions, allowing to reduce the non-determinism of a Prolog call se­
lecting only the clauses (of a many-clause procedure) which actually unify with a 
given call. 

The main reasons for the good performance of the W AM are: unification in most 
cases is not a general procedure, but is broken into simple test and assignment state­
ments; an appropriate classification of variables (permanent, temporary and void) allows 
the cutting down of the number of memory accesses; some space-saving techniques (last 



www.manaraa.com

5.5 Language Implementation and Execution 231 

call optimization and trimming [38]) contribute to reduce the amount of memory required 
at a given time, which is often a serious problem in logic programming; the technique of 
indexing on the first argument is an essential tool to reduce and in some cases eliminate 
the burden of handling backtracking. 

The extensions of the WAM to execute K-LEAF are confined to the dereferencing 
primitive and to the instruction set, while the architecture is left unchanged (Sects. 5.5.2 
and 5.5.3). 

5.5.1 The Parallel Virtual Machine for K-LEAF 

The parallel virtual machine we have designed takes into account both an OR-parallel (for 
the relational and equational part of K-LEAF) and an AND-parallel (for the achievement 
of functional parallel computations) component. The well-known problems discovered in 
implementing virtual machines supporting full AND/OR parallelism could be overcome by 
adopting the following restriction: an AND-parallel goal is constrained to be one-solution 
(i.e. it either fails or has only one answer substitution). Note that this is a natural re­
striction in the context of K-LEAF, where ground functional terms can be flattened into 
one-solution goals. More general conjunctions can be made to run in parallel by means 
of specialized primitives based on seto! operators (see Sect. 5.5.6). 

As our target is the achievement of a coarse-grain parallel implementation, where 
annotations control the creation of parallel computations, the design of the parallel virtual 
machine for IDEAL/K-LEAF can be split into two (almost) orthogonal parts: 

• an efficient sequential implementation for K-LEAF execution (Sects. 5.5.2 and 
5.5.3); 

• a set of primitives to spawn and control/synchronize parallel computations (Sect. 
5.5.5). 

At the level of architectural abstraction the virtual machine for IDEAL/K-LEAF is a 
set of fully connected PCMs (i.e. a processor + a private memory + a local memory + a 
communication unit), whose local memories form a distributed global address space. Each 
PCM carries on! in a multiprogrammed way, non-trivial pieces of computations in a way 
substantially similar to a sequential K-LEAF execution, according to an imperative (K­
WAM) code and acting on a number of internal data structures, which are the distributed 
pieces of the same structures of the sequential machine plus new ones for supporting the 
OR-binding conflicts. 

The following aspects characterize parallel K-LEAF computations with respect to 
sequential ones: 

• a computation can split into several either AND or OR parallel parts, and, thus, 
new processes must be created (and eventually eliminated); 

• as the data structures of the whole parallel computation are distributed onto dif­
ferent local memories, at some point of the computation a process could require to 
access some location of the structures allocated in another local memory; 



www.manaraa.com

232 5 Implementation of a Parallel Logic + Functional Language 

• OR-parallelism needs to cope with the problem of multiple-bindings (the same log­
ical variable can be bound to different values in different OR-computations); 

• the implementation of parallel functional reduction through AND-parallelism re­
quires a synchronization mechanism similar to read-only variables in concurrent 
logic languages: a consumer P may require the value of a produced variable (which 
in this case must be implemented as a read-only variable) whose producer is one of 
the processes AND-related to P. If this value is not yet computed, P suspends and 
waits for it. Therefore, when a process binds a read-only variable, it must awake all 
the processes waiting for the value. 

Intelligent local memories can be introduced to efficiently perform (in a mutually 
exclusive way) some complex memory accesses. The most relevant ones are variable 
dereferencing, and the requiring of a read-only variable. In the former case the operation 
could migrate on different local memories, by following the reference pointers, while in 
the latter, the operation could cause the suspension of the requiring process if the (deref­
erenced value of the) variable is an unbound variable. Multiprogramming is defined to 
be supported by processors, to cope with both physical (i.e. remote memory access) and 
logical (i.e. synchronization on read-only variables) latency. 

5.5.2 Basic Compilation Scheme for Outermost Strategy 

The efficiency of K-LEAF execution is related to the efficiency in recognizing produced 
variables and finding their producers: this is realized through a new WAM-type of term, 
called prodvar, which denotes the occurrence of a produced variable and links it to its 
producer. Moreover, by means of these links between variables and producers, the elimi­
nation rule is no longer considered, because a functional atom is implicitly eliminated as 
soon as in the current goal there are no longer occurrences of its produced variable. A 
prodvar(T,V,C), whose actual implementation in our K-WAM is shown in Fig. 5.1, joins 
the (internal representation of the) functional atom T and the produced variable V, while 
C is a control flag needed to avoid the duplication of the resolution of T= V (it is bound 
if T=V has been already resolved); prodvars can also be seen as a logical version of the 
functional closures. 

The syntactic unification algorithm is replaced by a version extended to handle prod­
vars: when a prodvar pv must be unified with a term t then: 

1. the algorithm performs the unification between t and ,the produced variable associ­
ated with pv; 

2. if t is not a variable, pv is inserted into a global list, called force-list. In case of 
unification success, such required functional atoms are resolved to their hnf (through 
a meta-call predicate). 

The basic compilation scheme of K-LEAFas well as the K-WAM, has been formally 
derived from the partial evaluation of the K-LEAF interpreter written in Prolog with 
respect to actual K-LEAF clauses. The compilation scheme for K-LEAF is an extension 
of the one for Prolog: most changes concern the compilation of the single clause, where 



www.manaraa.com

5.5 Language Implementation and Execution 233 

HEAP 
_ .. _ .. _ ............ -

- pv/2 pv( 

pv 
pointer Fe: c. 

I ISTRI STR Atom) 

....... __ ............ 

..... f/n+ 1 f ( 

arg1, argN». V ... , pv(C, f(V, V. 

arg1 arg1 • 

... ---_ ......... --. 
argN argN)) 

............... 

Figure 5.1: Actual representation of a prodvar 

the instructions to deal with extended unification for outermost strategy and evaluation 
to hnf must be introduced. The other aspects (i.e. backtracking, indexing, environment 
"management and procedure activation/return) are inherited from Prolog. An n-ary func­
tion 9 is compiled into an n + 1-ary procedure g-f of K-WAM (i.e. g(d1, ... , dn) = t is 
transformed jnto g_f(d1, ... , dn, t)). Original WAM unification instructions have been 
enhanced to collect into the force-list the functional atoms required by the unifier. The 
force list is pointed by two state registers (namely, hd and tI), and is built on the heap. 
The prodvars collected into a force-list are resolved through the non-deterministic system 
predicate force. 

Compared with the Prolog compilation scheme of the clause, the K-LEAF compiler 
adds some instructions that initialize (initreg instructions) and return (close instructions) 
the force-lists, and the calls to the predicate force. The activations of the required func­
tional atoms are performed when the unification of the head is completed. Therefore 
required atoms need to be temporarily collected during unification. In clauses defining 
functions, a second force-list may be necessary, since the prodvars met in the unifica­
tion of the functional-head rhs must be forced after the execution of the body. Clauses 
with relational heads need only one force-list "forced" before the body, while the general 
compilation scheme of those with functional heads is: 



www.manaraa.com

234 5 Implementation of a Parallel Logic + Functional Language 

iniLregl 
<lhs unification> 
init_reg2 
<rhs unification> 
closel 
geLvar_y 
close2 
call 
<compilation of the body> 
put_value_y 
call 

(al) 
yj al 
(al) 
force/1 

yj al 
force/1 

initialize hd and tl 
get & unify instructions operate on tl 
hd _ hdl, reset hd and tl 
get & unify instructions operate on tl 
hd - al : put rhs force-list in al 
save al in permanent register 
hdl - al : get Ihs force-list 
force Ihs prodvars 

get rhs force-list from permanent register 
force rhs prodvars. 

Several optimizations are performed in some cases to eliminate the instructions ini­
tializing/ returning/forcing the force-list. 

The compilation of the rhs of functional heads must guarantee that the resolution of 
a functional atom binds its produced variable at least to hnf. It depends on the type of 
the rhs: 

• function call: it is directly flattened as the last atom in the body; 

• constructor: no further instructions ar!! needed as in this case the rhs is already in 
hnf; 

• variable (e.g. X): the special instructions get-result or eucute_hnf are generated if 
X occurs as an argument in the lhs, or if X occurs within a structure, respectively. 

The second aspect peculiar to the compilation of K-LEAF programs is the generation 
of prodvars: if a function call is met in the body (respectively in the rhs of a func­
tional head, but not at the outermost position), the compiler generates the instruction 
puLprodvar (respectively geLprodvar). We show the compilation of the standard naive­
reverse function. K-WAM code is preceded by an abstract Prolog-like description: 

rev([])=[]. 
rev([E I L])=app(rev(L),[EJ). 

rev(A1,R) :- initlist,A1=O,R=O ,closelist(L ),force(L). 
rev(A1,R) :- initlist,A1=[E I LJ,closelist(FL), force(FL),app(pv(rev(L)),[EJ,R). 

1 rev switch_on_term $ cl1 , $ cl2 , $ fail 14 unify _var_y y3 
2 $ chI try.me.else $ ch2 15 getvar y y2 ,a2 
3 $ cl1 init_reg1 16 close! 
4 get-Ilil a1 17 call force/I, 3 
5 put-Ilil a3 18 puLprodvar rev.1/2 , a1 
6 geLvalue-x x2 , a3 19 unify _value_y y3 
7 close 1 20 putlist a2 
8 execute force/1 21 unify _ value_y y1 
9 $ch2 trust..me_else.1ai1 22 unify_nil 
10 $ cl2 init..regl 23 puLvalue_y y2, a3 



www.manaraa.com

5.5 Language Implementation and Execution 

11 
12 
13 

allocate 
getJist 
unify _var_y 

3 
al 
yl 

24 deallocate 
25 execute 

5.5.3 The Actual Compilation Scheme 

235 

app.f/3 

The outermost strategy implemented by the basic compilation scheme is optimal with 
respect to failures. On the other hand, even with sharing of functional calls, it is very 
inefficient for normal function evaluation: if a prodvar is required by n alternative reso­
lutions of a call, then its evaluation is performed n times in n independent OR-branches. 
We developed a compilation scheme to overcome this drawback, without losing the ad­
vantages of outermost strategy. It can be applied to a wide class of functions defined 
by cases. We adopted a version of the pattern compilation proposed by Augustsson for 
Lazy-ML [2]. It is obtained by generating new clauses which evaluate (to their hnf) the 
arguments always-required by a procedure, once for all, before the attempt of unifying the 
computed values against the corresponding patterns in the clause heads (this method is 
recursively applied to the newly produced clauses). A simple characterization of always­
required arguments is: 

Given a procedure (with more than one clause) defining a predicate/function, its i-th 
argument is always-required if all the i-th formal arguments in the head patterns are non­
variable terms. 

For instance, rev always-requires its first argument: 

rev(Al,R) :- eval..hnf(Al),aug_l(Al,R). aug_lm,D)· 
aug_l([E I LJ,R) :- app(pv(rev(L)),[EJ,R). 

aug_l is similar to the original definitions of rev. But when it is invoked, the first ar­
gument is always at least in hn!; therefore its unification against [] or [.1.] never requires 
a functional atom. 

The introduced scheme avoids that always-required arguments are evaluated as many 
times as the number of unifiable clauses but, on the other hand, it introduces another 
overhead, because it doubles the number of resolutions even if no functional atoms must 
be evaluated. We further optimized this compilation scheme to avoid this drawback, at 
least when the patterns of all the clauses in a procedure require the first argument. This 
optimization is based on an extension of the switch-on-term instruction, called switch-on­
prodvar: an additional case is added to deal with an unevaluated prodvar: 

proc/n: 
$var: 

Spy: 

switch_on_prodvar 
try -IIle_else 

save n 
force-llwitch 
restore 
execute proc/n 

$const $list $struct $pv 
$ else 

(allocate +) save al toCln on the stack 
eval to hnf al 

restore al to Cln (+ deallocate) 



www.manaraa.com

236 5 Implementation of a Parallel Logic + Functional Language 

The new branch is entered only when we actually have to force a prodvar, otherwise 
the original clauses are directly activated. 

A further improvement can be obtained by avoiding the building of prodvars for 
always-required function calls. If a function call f( tI, ... ,tn) occurs as an always-required 
argument in a context C(f(tI, ... , tn)], the corresponding prodvar is not generated, but 
the context is transformed into the conjunction (f(tl, ... , tn, V), C[Vj). If a variable X 
occurs as an always-required argument in a context C[XJ, the context is transformed into 
the conjunction (evaLhnf(X),C[Xj), where evaLhnf is compiled into the K-WAM in­
struction calLhnf. This transformation is performed to guarantee that, when a call is 
evaluated, all its always-required arguments are already in hnf (it is avoided if X is the 
first argument since this case is dealt by the switch-on-prodvar scheme). 

The contezt-sensitive flattening avoids building prodvars immediately required as soon 
as the outer call is evaluated. In certain situations, it must introduce auxiliary functions, 
as it is shown in the following example. Let q2 be a predicate which does not always­
require its first argument. 

ql(X) :- q2(rev(g». 

is abstractly compiled into: 

ql(X) :- q2(pv(strLO». 

strLO(R) :- g(Rl),rev(Rl,R). 

Note that the flattening ql(X) : -g(R),q2(pv(rev(R))) is not correct, with respect 
to the K-LEAF non-strict semantics, because the resolution of g(R) would always be per­
formed even if rev is not evaluated. 

To summarize, the developed compiler for K-LEAF is based on the three presented 
schemes: 

• context-sensitive flattening when an argument is always-required; 

• compilation ala Augustsson for "complex" sequential patterns [27], with the switch­
on-prodvar optimization); 

• the most general scheme, based on run-time accumulation and resolution of required 
functional atoms, to deal with non-sequential patterns, one-clause procedures and 
rhs's of functional heads. 



www.manaraa.com

5.5 Language Implementation and Execution 237 

An example which requires the use of all three schemes is: 

f(O,X) = X. 
f(1,m = O. 
f(1,[EIF]) = [Elf(g,F)]. 

f(pv,L,R) :- prodvar(Pv),! ,evaChnf(Pv)J(Pv ,L,R). 
f(O,A2,R) :- initlist.,gecresult(A2,R),closelisl(L),force(L). 
f(l,A2,R) :- evaChnf(A2),auLO(A2,R). 

1 f switclum-PfOdvar $c_bl , Sfail , Sf ail , $cl3 
2 $chi try_me_else $ch2 
3 $cll iniereg1 
4 geecOllS &0 , al 
5 gee var_x xl ,a3 
6 geuesulex xl ,al 
7 closeCskip_execute 
8 execute force/l 
9 $ch2 truseme_else_fail 
10 $e12 inieregl 
11 allocate 
12 geecons 
13 geehnf 

8ULO(O)=O. 
aULO([EIF)=[Elslrl_l(F)]. 

8ULO(O,o). 

2 
&l,al 
yl,a2 

8ULO([EIF),R):- init1ist,R=[Elpv(strC1(F)], 
closelisl(L),force(L). 

1 aULO switch_on_tenn $cll ,$c12 , SCail 
2 $chI try_me_else $ch2 
3 $ell geenil at 
4 puenil aJ 
5 geevalue_x xl,a3 
6 proceed 
7 Sch2 lrUSeme_elsc_Cail 
8 $e12 inicregl 
9 geUist al 
10 unify_var_x x3 
11 unify_var_x x4 
12 get_list a2 
13 unify_value_x x3 
14 unify_var_x x5 
15 get.JlfOdvar strl_11l , x5 
16 unify_value_x x4 
17 closel_sldp_execute 
18 execute forcell 

14 geevar-y ,y2,a3 
15 closel_skip_call 
16 call forcel1,2 
17 puevalue-y yl,al 
18 puevalue-y y2,a2 
19 deaDocate 
20 execute 8ULOIl 
21 $c13 save 3 
22 force_switch 
23 restore 
24 execute U/3 
25 $e_blswitch_on_cons 4.sfail 

&0 ,$ell I &1 ,$c12 

sIrCl(F)=f(g,F). 

sIrCl(F,R) :- g(Rl),f(Rl,F,R). 

1 slrCl allocate 3 
2 geevar-y yl,al 
3 geevar-y y2,a2 
4 puevar-y y3,al 
5 call Lf/l,3 
6 pueunsafe_ value y3,al 
7 put_value-y yl,a2 
8 puevalue-y y2,a3 
9 deallocate 
10 execute U/3 



www.manaraa.com

238 5 Implementation of a Parallel Logic + Functional Language 

The described compilation is independent of the possible way arguments are char­
acterized as always-required: user annotations (already exploited by the compiler) as 
well as complex strictness-analysis tools developed for functional languages [14) can be 
adopted. A detailed description ofthe sequential version of K-WAM can be found in [12). 

5.5.4 C-Emulation of Sequential K-WAM and Benchmarks 

An original C-emulator of WAM was upgraded in order to support K-WAM. For ease of 
implementation we chose to represent prodvars as standard Prolog terms, instead of more 
efficiently adopting a dedicated tag. The dereferencing primitive has been accordingly 
enhanced to deliver the ultimate value of an already evaluated prodvar-term. The opera­
tion of forcing a prodvar (i.e. evaluating a suspension) is implemented partly in K-WAM 
code and partly in C-Ianguage by means of a specialization of the original Prolog meta­
call primitive. These extensions of the C-emulator are conservative, in the sense that any 
Prolog program compiled into WAM code can be executed by the K-WAM emulator (with 
an average overhead of 10%, which can be dropped to 5% by using a prodvarreserved tag). 

Simple benchmarks have been run on the IDEAL/K-LEAF system 

1. in order to get a flavor of the overhead imposed by lazy evaluation in the context of 
K-WAM code, and 

2. in order to compare the performance of outermost resolution with lazy evaluation 
of functions. The C-emulated K-WAM was run on a VAX 8700. Run-times are 
expressed in milliseconds. 

Examples: 

revN: 
revIN: 
fibN: 
walkN: 

Naive reverse of a list of N elements, in functional style 
Naive reverse (functional) of a list of N elements in inverted mode 
Nth fibonacci number 
Non-naive functional rev of a list of N elements repeated N times 

The execution times in Fig. 5.2 refer to outermost compilation, with simple strictness 
analysis. In the compilation of fib, the first argument could not be inferred as always­
required, due to the absence of a constructor in the head of the recursive case. By adding 
a strictness annotation to the fib's argument, which is equivalent to inferring the always­
required status, fib is compiled as in Prolog, hence the ratio is close to 1. 

A more significant benchmark showing good performance with respect to conventional 
languages has been represented by an invertible event-driven logic simulator described in 
[9). 

We experimented with the expansion in C-code of the extended WAM instructions as 
an approximation to a native code generation in order to estimate the achievable perfor­
mance on several machines. 



www.manaraa.com

5.5 Language Implementation and Execution 239 

Query Time K-LEAF Time Prolog Ratio 

rev40 82.5 28.5 I 2.9 
rev20 2.25 0.75 3.0 
revI40 1200 397 3.01 
revI20 165 I 60 2.75 
fib15 285 135 2,1 
fib10 22.5 12.7 1.77 
walk300 3037 2850 1.06 
walk200 1282 1275 1.00 

Figure 5.2: K-LEAF vs. Prolog execution time 

Figure 5.3 reports the execution times (in seconds) of some C-expanded K-LEAF pro­
grams, and compares them with corresponding programs in Quintus Prolog 2.2, Lazy ML 
[2], and C-Ianguage, under Sun3/280. The programs are queensN (the C implementation 
is imperative and makes use of arrays), fibN, walkN and revN (with the list constructor 
strict in both arguments). 

Even though we tested this approach on a small set of programs and we do not yet 
have a well engineered system for C-code generation, the above figures suggest that the 
approach of C-compilation is viable, with the great advantage of portability and scal­
ability to new RISC machines. The drawback of the C-expansion approach, besides a 
significant increase of the total compilation time, is the occupation of the generated code: 
in fact, the average size of the C-object file is double that of the code produced by the 
Quintus Prolog compiler. 

5.5.5 Execution of OR-parallel K-LEAF 

As already explained in Sect. 5.3.3, OR-parallel K-LEAF extends the syntax of an OR­
Parallel Prolog towards the capability to express functions and equations. To obtain 
an OR-parallel system for K-LEAF the required extensions to WAM are the (almost 
disjoint) union of those required by OR-parallel Prolog and K-LEAF outermost strategy: 
the same extensions made to sequential WAM to support sequential K-LEAF can be 
inserted, almost without changes, in an OR-parallel version of WAM. The extensions to 
the WAM for OR-parallel Prolog have to do with: 

• OR-nondeterminism: primitives are introduced to create and spawn processes when 
a parallel procedure is invoked: in our solution first-par-clause, par-clause and spawn 
instructions replace try, retry and trust instructions used in sequential procedure to 
handle backtracking . 

• multiple-bindings: new data structures (namely, binding arrays and binding lists 
in our solution) are added to cope with the problem of multiple-bindings: they 



www.manaraa.com

240 5 Implementation of a Parallel Logic + Functional Language 

Query K-LEAF Quintus Lazy ML C 

queens9 5.5 13.18 7.5 1.0 

fib29 22.4 46.7 11.8 4.8 

walk300 0.6 1.0 0.55 0.4 

5*rev300 1.75 1.65 II II 

Figure 5.3: C-expanded K-LEAF performance 

introduce a different variable representation which influences both the dereferencing 
and the binding algorithms . 

• OR-parallelism and backtracking interaction: new primitives (e.g. setof constructs, 
... ) to allow this interworking are introduced. 

The OR-parallel version of WAM we considered is the one developed for the language 
described in [24]: it is a variant of the SRI multisequential model [39] which was developed 
to keep as much as possible the WAM approach in parallel architectures with common 
address space. The main differences are: 

1. eager spawning of processes with respect to retroactive parallelization: when a par­
allel atom must be resolved, the unification attempts against different clauses are 
performed sequentially, before spawning as many processes as successful unifications; 

2. an original mix of binding arrays and binding lists, to implement multiple environ­
ments: binding arrays are used to bind stack variables, and binding lists to bind 
heap variables, shared among different OR-processes; 

3. a discipline in the interaction between backtracking and OR-parallelism: a parsetof 
construct is used to start a parallel computation in a sequential context, while an 
all-solutions construct allows invocation of a sequential computation in a parallel 
context. All the details of this abstract machine, along with the description of its 
implementation on the architecture described in Sect. 5.6, can be found in [30]. 

As regards process creation, our preference for eager spawning was dictated by the 
need to possibly support a search strategy more general than depth-first (as a matter of 
fact, a best-first score-guided approach can profitably be used in many AI applications). 
Moreover, also from a philosophical viewpoint we share the opinion of [26], who have 



www.manaraa.com

5.5 Language Implementation and Execution 241 

studied a large realistic OR-parallel application of natural language processing and pos­
tulate that process creation should be determined solely by annotations in the program, 
not by any run-time considerations. Compared with the multisequential model, where 
the number of parallel activities is naturally limited to the number of physical processors, 
in our model the combinatorial explosion typical of unwise brute-force OR-parallel search 
is controlled in a different way, but with comparable effectiveness, by carefully exploiting 
the control constructs and annotations provided by the language (e.g. distinction between 
parallel and sequential procedures, guards, if-then-else parallel construct, etc.). Besides, it 
is to be stressed that eager spawning of a process does not ne~essarily imply an immediate 
execution of itj namely, a new process is not started soon, but for some time is forced to 
stand quiescent in a scheduling queue, so occupying a minimal amount of memory and 
preventing eager creation of further processes. Stated in different terms, if the language 
primitive to modify process priority is not used, the resulting search strategy is multi­
depth-first, that is, the same strategy as the multisequential model (the only overhead to 
pay for our more general scheme is that the actual representation of a quiescent process 
is a bit less concise than an ordinary choice point ). 

For the problem of implementing a structure of Multiple Environments, through which 
alternative OR-parallel sub computations can assign different"values to variables which are 
still unbound when the computation forks at a split node, none of the solutions proposed 
in the literature (for a broad and comparative discussion see [18] [40]) seemed to fully 
satisfy the requirements of our model. The most interesting methods can roughly be 
grouped under two classes: Binding Array (BA) and Hash Windows (and variations of 
these). 

Very briefly, the former technique consists in transforming a reference to an unbound 
variable into the index of an array. Multiple bindings can be created in a straightforward 
way by assigning each process its own BA copy. Hash Windows are an optimization of 
a more elementary concept, the Binding List (BL), which in turn is a generalization of 
the Trail of the sequential model. An assignment to a variable of a shared frame (i.e. 
allocated before the most recent split point) cannot be done directly and, instead, a pair 
<var_address, value> is added to BLj the dereference algorithm is modified accordingly: if 
the variable cell contains the value unbound and belongs to a shared frame, BL is scanned 
sequentially until a binding for that variable is foundj only if the search fails, that vari­
able is actually still unbound. These two methods are opposite in behaviour: BA allows 
a fast constant-time access to a variable cell, but at the expense of a remarkable overhead 
for process creation or switching (in our model, each process requires an individual BA 
copy, which implies that at the moment of spawning a new process the parent's BA is 
duplicated)j BL introduces no overhead at the time of process creation (the list is just 
turned into a tree reflecting the same topology of the search tree, where ancestor arcs 
are shared among descendant processes), but at the expense of a search of unpredictable 
length (Hash Window optimization can only slightly alleviate this shortcoming). Inciden­
tally, it should be noticed that unless appropriate measures are taken, each BA always 
grows, as its lifetime has the same nature as the lifetime of Heap (deallocation taking 
place only upon backtracking and not upon procedure success)j of course, naively copying 
an ever-growing data structure is not recommendable practice. 



www.manaraa.com

242 5 Implementation of a Parallel Logic + Functional Language 

Starting from these considerations, we have devised an original technique combining 
BA and BL, which tries to keep the advantages of both methods while avoiding drawbacks 
as much as possible. Our strategy is based on a compile-time classification of potentially 
unbound parallel variables, which are distinguished into two classes: local (roughly, stack 
variables, i.e. not occurring in a structure) and global (heap variables). Only local vari­
ables are inserted into BA, while multiple bindings for global variables are built through 
BLj the resulting benefit is that in this way the Binding Array ceases to be an ever-growing 
structure and can shrink upon procedure success. 

To illustrate the interworking of OR-parallelism, backtracking and outermost strat­
egy and to mirror the underlying WAM-based implementation, we describe a kernel of 
an interpreter for OR-parallel K-LEAF, written in OR-Parallel Prolog [24]. By using a 
parallel version of Prolog as specification language, we abstract from the implementation 
details only related to OR-parallel resolution. 

The first aspect concerns the representation of suspended functional atoms: in OR­
parallel K-LEAF there are two types of prodvars: s_prodvar/3 and p_prodvar/3 denote 
suspensions of sequential and parallel functional calls, respectively. For example, the 
internal form of the second clause for $rev defined in Sect. 5.3.3 is: 

$rev([E I L]) = s_prodvar(app(p_prodvar($rev(L),Vl,Cl),[E]),V2,C2). 

The interpreter consists of four main parts. Here, we report the most relevant ones. 

1. Resolution of sequential goals: eval uses evaLatom to describe the resolution of a 
functional/relational atom. It mirrors the sequential implementation detailed in 
Sect. 5.5.2. 

2. Resolution of parallel goals: calls of strict-equality test and sequential atoms (e.g. 
A) are evaluated through the all_solutions construct ({ ... }). 

$eval( true). 

$eval( (Gl,G2) ) :- $eval(Gl),$eval(G2). 

$eval(parsetof(G,T,S» :- parsetof(G,T,S). 

$eval(G) :- { eval(G) }. 

$eval( X=:Y ) :- { stricLequality_builtin(X,Y) }. 

$eval(atom(A» :- sequential(A) -+ { eval_atom(A) }j $eval_atom(A). 



www.manaraa.com

5.5 Language Implementation and Execution 243 

Resolution of parallel functional/relational atoms: clause selection and extended 
unification are performed inside an alLsolutions construct, to point out that the 
unification attempts against different clauses are performed sequentially, before 
spawning as many processes as unification successes (see below the conjunctions 
kclause(H = R, B), unifyarg (Argh, Arg, [], Larg), unifyres(D, R, [J, Lres) for func­
tional atoms and kclause(H = R, B), unifyarg(Argh, Arg, [J, Larg) for relational 
ones). 

SevaLatom(T=D);- fUDctor(T,F,N),T= .. [_ I Argl,fundor(H,F,N),H= .. [_1 Arghl, 

Seval.atom(P) ;-

{ kclause(H=R,B), unifyarg( Argh,Arg, ° ,Larg), unifyres(D ,R,O,Lres) }, 
Sforce(Larg) ,Seval(B) ,Sforce(Lres) ,Seval...hnf(D). 

fundor(P,F,N),T= .. [_ I Argl, fUDctor(H,F,N),H= .. [_ I Arghl, 
{ kclause(H,B),unifyarg(Argh,Arg,O,Larg) }, 
Sforce(Larg) ,Seval(B). 

The following actions are performed during the resolution of the parallel functional 
atom T = D with the clause H = R : -B (compare them with the compilation 
scheme reported in Sect. 5.5.2): 

• unifyarg(Argh,Arg,[],Larg): The enhanced unification between the arguments 
of the functional call T and the pattern in H is attempted and the list Larg 
holding all the required producers occurring in T is built; 

• unifyres(D,R,[],Lres): The enhanced unification between D, the requested value 
for T, and R, the rhs of the functional head, is performed, and the required 
producers are inserted in the list Lres; 

• I}': if the enhanced unification succeeds, a new process is created to continue 
the computation; 

• Sforce(Larg): The producers in list Larg are resolved; 

• Seval(B): The atoms in the body B are resolved; 

• Sforce(Lres): The producers in list Lres are resolved; 

• Seval.hnf(D): The value of D is examined: if it is a not- yet-evaluated prodvar 
then it is resolved. 

3. Activation of required functional atoms:$force and $evaLhnf are the parallel coun­
terparts of the sequential force and evathnf The peculiar aspect of these predicates 
is that they must be able to resolve sequential (resp. parallel) functional atoms even 
in a parallel (resp. sequential) context: 

• a sequential functional atom in a parallel context is resolved through the 
alLsolutions construct; 

• a parallel functional atom in a sequential context is resolved through the 
parsetof construct; 

Sforce( [] ). 

Sforce([s_prodvar(T,V,C) I L]) :- (var(C) - C=done,{eval..atom(T=V)};true), Sforce(L). 



www.manaraa.com

244 5 Implementation of a Parallel Logic + Functional Language 

$force([p_prodvar(T,V,C) I L]) :- (var(C) - C=done, $eval-atom(T=V) j true), 
$force{L). 

force{[]). 

force{[s_prodvar(T,V,C) I L]) :- (var(C) - C=done,eval-atom(T=V) j true),force(L). 

force([p_prodvar(T,V,C) I L]) :- (var(C) - C=done,force_aux(T=V) j true),force(L). 

force_aux(G) :- parsetof($eval-atom(G),G,L),force..member(L,G). 

force..member([X I _j,X). 

force..member([_ I Lj,X) :- force_member(L,X). 

force_member is a version of member predicate that non-deterministically unifies G 
against an element (i.e. an instance of G) in the list L computed by the parsetof 
construct. 

4. ~J'stem primitives (e.g. unifyarg, unifyres, ... ): they are those of the sequential im­
plementation enhanced to work with two types of prodvarterms. Both must be dealt 
with as prodvars in the sequential case, as it can be noted in the definition of kind 
(which can be thought as the specification of the system dereferencing primitive): 

kind(lvar(L),K,Y) :- !,(var(L) - K=var,Y=lvar(L) j kind(L,K,Y». 

kind(X,pv,X) :- (X=s_prodvar (_,_,C) j X = p_prodvar(_,_,C) ), var(C), !. 

kind(X,K,Y) :- (X=s_prodvar(T,V,C) ; X =p_prodvar(T,V,C) ),!,kind(V,K,Y). 

kind(X,constr,X). 

The WAM-based implementation of the above model is a first actual approximation 
to the implementation of the virtual machine (described in Sect. 5.5.1). 

Some constraints are inherent in this implemented model: the execution of the con­
structs which allows evaluating a parallel (resp. sequential) atom G in a sequential 
(resp. parallel) context (i.e. namely, parsetof and alLsolutions) terminates only when 
the whole search-space for G has been explored. This could be prevented by extending 
the all_solutions construct (so that it eagerly spawns the computed solutions) and by 
introducing a new version of the parsetof construct whose partially computed list is im­
mediately made available for a consumer. Moreover, as regards the use of the parsetof 
construct to resolve parallel functional atoms required in a sequential computation, we 
have to remark that this could imply performing expensive copies of data structures (rep­
resenting the functional atom along with its arguments). We are currently investigating 
a variant of the parsetof construct to be used in this case, so as to eliminate (or, at least, 
to reduce) the amount of data to be copied. 



www.manaraa.com

5.5 Language Implementation and Execution 245 

The following is the K-WAM code resulting from the compilation of the naive-reverse 
OR-parallel definition reported in Sect. 5.3.3: 

$rev([])=[]. 

$rev([E I L])=app($rev(L),[E]). 

$ rev(Pv,R) :- prodvar(Pv),!,$ evaLhnf(Pv),$ rev(Pv,R). 

$ rev(O,O). 

$ rev([E I L],R) :- $rev(L,R1),{app(R1,[E]'R)}. 
1 $rev switch_on_prodvar $cl1, $cl2, $fail, $cl3 
2 $ch1 firsLpal-clause $cl1 
3 pal-clause $cl2 
4 spawn 
5 $cll geLnil a1 
6 puLnil a3 
7 geLvalue-x x2 ,a3 
8 save_process 
9 proceed 
10 $cl2 par-allocate 4 
11 getJist a1 
12 unify_vaLY y1 
13 unify _var_y y4 
14 geLvar_y y2 , a2 
15 save_process 
16 puLvalue_y y4 , al 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 $cl3 
31 
32 

puLvar_ba 
call 
all..sol u tion 
spawn 
puLvalue_y 
putJist 
unify _value_y 
unifyJriI 
puLvalue_y 
call 
save_process _as 
par_deallocate 
proceed 
par..save 
par ...force _swi tch 
par-.restore 

y3 ,a2 
$rev$f/2 

y3 , a1 
a2 
yl 

y2 , a3 
app$ f/3 

2 

33 execute $rev$ f/2 

A detailed description of the OR-parallel abstract machine for K-LEAF and the re­
lated compilation schemes is in [10] [11]. 

5.5.6 Mapping AND-parallelism into OR-parallelism 

The kind of AND-parallelism necessary to fully exploit the parallelism available in func­
tional reduction (namely the possibility to run in parallel arguments and function bodies) 
requires the introduction of synchronization primitives (similar to read-only variables) 
and a somewhat different memory management (see Sect. 5.5.1); on the other hand, a.S 

discussed in [7], we realized that the set primitives already present in the OR-parallel 
implementation allow simpler, but quite useful, forms of AND-parallelism, namely those 
related to the parallel evaluation of arguments of functions and data structures. 

As a matter of fact a similar approach has been also recently taken by Argonne 
researchers in the context of the GigaLips project [16], in contrast with more complicated 
AND JOR schemes requiring a highly sophisticated and complex virtual machine like 
in [41]. It amounts to (syntactically) converting a problem of AND-parallelism into a 
program which only makes use of OR-parallel set primitives. 

and_par(F,G) :-
parsetof( (parsetof(F,F ,Fset) $; 



www.manaraa.com

246 5 Implementation of a Parallel Logic + Functional Language 

parsetof(G,G,Gset) ), (Fset,Gset ),[(Fs,Gs ),(Fs,Gs)]), 
force..m.ember(Fs,F) ,force..m.ember(Gs, G). 

Here F and G are evaluated in parallel (by the outermost parsetol) and each of them 
can lead to several OR-parallel solutions (computed by the innermost parsetofconstructs). 
After this the computation becomes sequential, and calls of force_member (specified in the 
previous subsection) perform the join of solutions in a backtrack fashion (of course, an 
OR-parallel version of force_member will compute the join in an OR-parallel way). The 
major drawbacks of this method are the one previously mentioned for the interworking 
of outermost strategy and OR-parallelism, namely n<;m-termination for infinite solution 
spaces and substantial copying. Anyway, we share with [16] the,feeling that the method 
should suffice for many 'Practical cases. 

5.5.7 The Actual Parallel Implementation 

A parallel C-emulator system for IDEAL/K-LEAF has been implemented on PIPES, our 
physical Transputer-based parallel machine described in the following section, by extend­
ing the already existing parallel Prolog system [30]: along with OR-parallel computations 
this emulator performs parallel functional computations through the and_par construct. 
The present system also includes a compiler from parallel K-LEAF to parallel K-WAM 
code and a lambda-lifting procedure from the parallel version of IDEAL to parallel K­
LEAF. With respect to a sequential emulator the parallel implementation is obtained 
by: 

• Vectorizing the sequential emulator, that is, a set of WAM states is used to represent 
several parallel WAM processes. Each processor holds a queue of (pointers to) such 
ready processes (one of them is actually running). 

• Introducing a load-balancing policy. 

• Implementing a fixed-length block memory management to grow the WAM data 
structures. 

• Enriching the WAM instruction set and run-time primitives with those for handling 
OR-parallelism and outermost strategy, 

• Introducing procedures and message passing for remote access triggered by software­
based address control and for detecting distributed termination of OR-processes. 

• Adding some graphic display of figures about degree of parallelism, processor load, 
etc. 

One of the main issues in a distributed multiprocessor is the implementation of an 
efficient parallel scheduling policy, able to achieve a fair load balancing of processes among 
processors. Two principles have been followed: 

a) In a physical architecture like ours, lacking a true common memory, a distributed 
policy is in any case to be preferred to a centralized one. 



www.manaraa.com

5.6 Hardware Architecture 247 

b) In order not to compromise locality of reference, processes can be transferred only 
once. After a process has been inserted into the scheduling queue of a processing 
node, further migrations are forbidden (a process in the course of execution may 
have generated a lot of data structures in the local memory of a Transputer, which 
we don't want to move). 

Our load-balancing mechanism operates on a demand basis, so being able to distribute 
processes only when really needed. It works as follows: 

a) When new processes are spawned in a processor, they are inserted into the scheduling 
queue of that node, ordered on the grounds of priority information. 

b) All the time an idle_mask message circulates through a virtual ring network con­
necting all processors (realized via the Delta network). A bit set in a given position 
of the mask indicates that the corresponding processor is idle (i.e. the number of 
processes in that node is below a programmable threshold). 

c) When a processor 1i receives the idle_mask message, if there are idle processors 
and if To has sendable processes (a process is sendable only if it hasn't been started 
yet. This measure is intended to reduce the cost of transmission and minimize 
non-local accesses). Ti sends one process to each idle processor, as long as there are 
sendable processes; at the end, idle_mask is propagated to Ti+! (note that if To is idle, 
before the propagation the corresponding bit in the mask is switched on). The above 
scheduling policy, which is able to favour locality of reference by preferably allocating 
a new process in the same node of the parent process, with minor adjustments and 
appropriate tunings, has shown a very satisfactory load-balancing performance in 
a wide range of situations, and has been essential to achieve the speed-up figures 
reported in Sect. 5.7.2. 

5.6 Hardware Architecture 

The parallel" architecture which runs the IDEAL language is PIPES (Packet Intercon­
nected Processing ElementS), an experimental multiprocessor machine designed and de­
veloped with the explicit target of being a suitable testbed for real-time AI applications. 

The real-time constraint requires the availability of adequately high processing power, 
so parallel architectures targetted to this task must be easily upgradable, while a common 
feature of many AI applications is the need for an efficient support of irregular, strongly 
data-dependent communication among several processes cooperating for solving the prob­
lem. 

The need for a good solution for this communication problem was the driving force in 
the early phase of PIPES design: several interconnection structures were analysed, from 
the point of view of efficiency, complexity and suitability for large numbers of intercon­
nected nodes, and the choice of employing a packet-switched multistage interconnection 
network was made as the best trade-oft' amongst the various factors. 



www.manaraa.com

248 5 Implementation of a Parallel Logic + Functional Language 

The chosen solution is suitable for architectures up to several hundreds of processing 
nodes, and in this sense PIPES is a very good testbed for para.llel applications and exper­
iments which, in a short or medium timescale, need an easy-to-use and efficient support 
to a generalized communication. Parallel architectures based on multistage networks are 
probably not the best solution when thinking about machines comprising thousands or 
millions of processing nodes: for such a perspective different approaches should be taken 
into account [1]. 

It is worth mentioning, before going into greater details, that PIPES is a transputer­
based architecture as several others proposed in the same period [33], [34], [17]. The 
fundamental difference with respect to those relies on the fact that, while using a trans­
puter for several interesting reasons explained in the following, PIPES does not just make 
available to the user. the INMOS point-to-point communication capabilities, which allows 
for the construction of any static graph of fixed degree among the computational nodes 
of the system (although programmable and rearrangeable as in the Supernode), but it 
gives a direct, complete and efficient (since totally hardware-based) interconnection ca­
pability among all its computational nodes. PIPES is so oriented to extend the range of 
applicability of transputer-based systems to irregular, dynamic, communication-intensive 
algorithms. 

5.6.1 Architectural Overview 

The PIPES architecture is based (see Fig. 5.4) on a number of processing nodes which 
comprise a Processing Element (PE), built around the 32-bit microprocessor transputer 
T414/T800, a (local) page of memory (MM) of about 2 Mbytes, and a Processor-Memory 
to Network Interface (PMNI) circuit. 

The processing nodes in PIPES are connected by means of two distinct interconnection 
networks, one for local (i.e. near neighbours) communication (LCN: Local Communication 
Network), and the other for non-local communication (NLCN: Non-Local Communication 
Network). These two networks are different in implementation techniques, conveyed traf­
fic and purpose. 

The LCN is a point-to-point network implemented by directly wiring in a fixed topol­
ogy the high-speed serial links provided by the transputer. In the PIPES machine the 
chosen topology is a bidirectional ring, which is easy to manage and anyway adequate to 
support the traffic, as this network is mainly used for downloading of programs and data 
at bootstrap-time and flowing 61 a small amount of control information from/to the host 
at run-time. 

The NLCN is realized by means of a buffered multistage packet-switched interconnec­
tion network with Delta topology, whose characteristics and related pedormance will be 
detailed in the next section. It support unidirectional communication, so each processing 
node must be connected to both one input and one output of the network. The NLCN 
provides a fast transfer mode at the physical machine level to support efficiently requests 
and responses to/from remote MMs, i.e. remote read or write operations to non-local 



www.manaraa.com

5.6 Hardware Architecture 249 

PE PROCESSING ELEMENT SE SWITCHING ELEMENT 
MM MEMORY MODULE LCN LOCAL COMMUNICATION NETWORK 
PMNI NETWORK INTERFACE NLCN NON- LOCAL COMMUNICATION NETWORK 

r -,.---... ---,- -------------------, ----------------, 
1+1 I 

I PE MM I 
I 8+8 
I PMNI I 
I I 
I 
I 
I 
I 
I 
L-_ 

LINKS 

"'--_~IPE MM 

PMNI 
2 

--------------,--------

LCN 

.... ---... PE MM N 

PMNI 

L __ PHYSICAL 

PARTITION 

• 
• DELTA NETWORK 

NLCN 

Figure 5.4: PIPES general architecture 

pages of memory which are logically shared but physically distributed among the pro­
cessing nodes. That allows PIPES to be classified as an evolution of the shared memory 
architectures because it retains the global adressability of all its storage locations (i.e. 
"remote pointers" are a basic data type supported at the virtual machine level) according 
to a concept pionereed by the CM" development and now used in a number of contempo­
rary machine (e.g. Alice, Rediflow, BBN Butterfly and IBM RP3). 

The function which is responsible for giving the visibility of the global memory space 
of the machine to each single processing node is implemented in the PMNI block. This 
block is able to recognize remote memory access, formatting a packet of remote request, 
sending it through the NLCN, handling the answer obtained and giving in turn the an­
swers to requests of the same kind coming through the NLCN from other computational 
nodes and it is implemented partially in software within the PE and partially in hardware 
using the commercially available INMOS link adaptor to interface the PE to the NLCN. 



www.manaraa.com

250 5 Implementation of a Parallel Logic + Functional Language 

When implementing the aforementioned "global distributed storage" concept, the 
problem of dealing with the latency time for remote memory accesses inevitably arise, 
and a solution must be find to avoid wasting CPU power in long series of "wait" cy­
cles. In PIPES this solution consists in multi-micro-tasking the processing element of the 
node among a (small) number of virtual processors, and in supposing a very fast context 
switch, when a virtual processor refers to a remote data structure, to a different virtual 
processor able to proceed with its processing using local data. This technique exploits one 
of the peculiar features of the transputer device, i.e. its sub-microsecond switching time 
that makes it a very good approximation of the ideal processor for this kind of architecture. 

PIPES is hosted by an IBM PC AT equipped with an INMOS evaluation board. The 
host is connected to the LCN as though it were the N + 1 processing nodes, and its 
run-time role is mainly collecting information from the system and giving the user some 
monitoring facilities. 

5.6.2 The Non-Local Communication Network 

As already stated, the NLCN function is implemented by a binary Delta network. A 
network of this type, connecting N inputs to N outputs (N being a power of 2), consists 
of N/2 . l092N 2 x 2 switches arranged in l092N stages interconnected by patterns of 
unidirectional links in such a way that any output can be reached from any input (see 
Fig. 5.5). Moreover, the following condition must be met: if any path is described by 
a bit string indicating the output chosen at each binary switch traversed, the descriptors 
of all the paths leading to the same network output are identical. Therefore this path 
descriptor is a string of l092N bits which can be used to identify the output. 

A large literature exists on Delta networks; see for instance [21] [22]. The definition 
above allows different topologies, all of which, however, can be shown to be equivalent in a 
MIMD environment characterized by uniform traffic. Therefore, the choice of a particular 
topology depends in this case only on implementation (i.e. "wireability") considerations. 

The network operating mode is packet switching, where packets have variable length 
and begin with a field, called a "routing tag", which contains the path descriptor rela­
tive to its destination: this allows each binary switch to route the packets autonomously 
after having analysed the proper bit of the routing tag. To optimize the crossing delay, 
cut-through switching is employed, i.e. the first bytes of a packet can be sent to the next 
stage immediately after the routing decision has been taken, even before other bytes of 
the packet have been received at that stage. 

The performance of a packet-switched Delta network can be reduced due to two dif­
ferent phenomena: routing conflicts and backpressure due to buffer filling. The provision 
of buffers inside each switching element allows, in the case of two packets competing for 



www.manaraa.com

5.6 Hardware Architecture 251 

the same output port, to resolve the conflict by storing the loser and forwarding it at the 
following cycle. 

Overflows are prevented by means of a backpressure mechanism consisting of a signal 
which blocks the transmission of new packets from the preceding stage when the buffer is 
full: therefore no loss of packets is possible within the NLCN. The evaluations described 
in the next section show that the operating conditions and the dimensioning of the net­
work are such that the network throughput is not decreased by backpressure. 

0000 0000 

0001 0001 

0010 0010 

0011 0011 

0100 0100 

0101 0101 

0110 0110 

0111 0111 

1000 1000 

1001 1001 

1010 1010 

1011 1011 

1100 1100 

1101 1101 

1110 1110 

1111 1111 

Figure 5.5: An example of a Delta network 



www.manaraa.com

252 5 Implementation of a Parallel Logic + Functional Language 

5.6.3 Performance Evaluation 

The overall pedormance of the multiprocessor depends on the interplay of widely different 
factors, related to different hierarchical levels, like the NLCN throughput and delay char­
acteristics, the scheduling and process communication mechanisms, the load distribution 
strategy, the efficiency of the compiler and the potential for parallelism of the algorithm 
itself. 

While for the higher-level, software-related issues the experimentation on a prototype 
is the only viable evaluation methodology, hardware and firmware-related issues can be 
studied by simulation or analytical modelling. In the following the NLCN pedormance 
and the efficiency of the solution adopted to overcome the memory latency problem are 
evaluated. 

For what concerns the NLCN, an exact analytical model of a packet-switched Delta 
network is infeasible due to its huge state space. However, simulation runs taking into 
account all the characteristics of this implementation (finite length input buffers, back­
pressure flow control, cut-through switching) have given several interesting results. 

The first is that, for any fixed load below saturation, if the buffer size is increased 
starting from unity, a value is found for which the backpressure effect disappears and 
the delay is negatively affected only by routing conflicts inside the switches. Conversely, 
for any given buffer size, there is an operating region below saturation where the stages 
interact strongly through the backpressure mechanism, while, at lighter loads, the interac­
tion is negligible. The buffers of the switching element in the NLCN are designed so that 
the network operates in this region for all the foreseeable loads in the intended application. 

Because in the light loading region the behavior of a single switch with infinite buffers 
can be taken to represent, with little approximation, the behavior of the network as a 
whole (for instance the network average delay can be assumed to be lOg2N times the delay 
of a switch), it is useful to develop an analytical model of the 2 x 2 switch. 

A model for the switch with output buffers, under the assumption of synchronous 
operation, uniform traffic distribution and independent arrivals of unit-length packets, has 
been described in [28]. The throughput/delay characteristic is expressed by the following 
formula: 

d = 1 + p/[4(1 - p)] (5.1) 

where p is the throughput, i.e the probability that a unit-length packet occupies a 
time slot on a link. 

Under the same assumptions an excellent approximated model for the input buffering 
case can be developed by analysing the behaviour of one of the buffers, influenced only 
by the probability that the other one is empty or full (and not by its complete state 
description: see Fig. 5.6). The resulting formula for the throughput/delay characteristic 
IS: 



www.manaraa.com

5.6 Hardware Architecture 

1- POO 

P1 --
Figure 5.6: Model with independent buffers 

d = 2(1- p)/[h+ 1- 2p] 

253 

(5.2) 

The above evaluations give a positive assessment of the NLCN performance in the 
expected operating conditions (p < 0.1). However, when N becomes large, a fast inter­
connection network cannot totally overcome the memory latency problem, but only make 
an architectural solution somewhat cheaper. In the present case such a solution consists 
in multiprogramming each processing element and performing a context switch at any 
remote memory request. 

The efficiency of the solution can be evaluated with the simple queuing network of 
Fig. 5.7 In this model the single server represents the CPU, and its associated queue the 
ready list, while the delay unit (a parallel infinite server) models the remote memory ac­
cess time. The variable n represents the number of processes waiting for a response from 
the system; if N is the multiprogramming level, there are N - n processes in execution 
or in the ready list. tE is the CPU processing time and tT the remote memory access time. 

The main hypotheses behind this much simplified model are that a remote memory 
server is employed (the CPU time otherwise necessary to handle remote memory access 
requests is not considered) and that uniform behaviour of the multiprocessor is assumed, 
because a single processor is taken to represent the whole system. Moreover, tE includes 
also the context switch time, therefore the actual processor utilization is penalized by the 
factor (tE - tcS)/tE, which clarifies the need for a fast context switch mechanism. The 
solution of the model in an operational framework [19] can be conveniently expressed by 
means of E(1',N), the Erlang-B formula with load factor l' = tT/tE' The results for the 
utilization U, the average number of suspended processes nav and the response time T 
(time to complete a cycle) are: 

U 1 - E(1', N) (5.3) 



www.manaraa.com

254 5 Implementation of a Parallel Logic + Functional Language 

REMOTE 
ACCESS 

tE READYUST 

Figure 5.7: A simple model of a processing element 

nav 

T 

r(l - E(r, N)) 

tE(N + rE(r, N) 

(5.4) 
(5.5) 

tE isa parameter which can be estimated by executing the same algorithm on a 
uniprocessor, while tT includes two network crossing times, which in their turn depend 
on nav. Thus, it is necessary to use the results obtained for the NLCN (equation 5.1 or 
5.2 above) and solve the model iteratively. 

To obtain results which are largely technology-independent it is convenient to express 
the times involved in terms of switching element cycles. Let tE = C cycles; if D(nav) 
is the network crossing delay, tT can be expressed as tT = 2D( nav) + C / K, where the 
term elK represents the remote memory handler operating speed. If M is the number 
of processors, the performance results can be given as a set of curves with parameters C, 
K and M. Figure 5.8 gives U versus N for M = 256 (a rather large multiprocessor), 
C / K = 10 and C = 50, 20 and 10 (50 is a reasonable value, while 20 and 10 represent 
a very slow network). It is readily seen that a multiprogramming level of 3 is enough to 
obtain a very high utilization in all reasonable situations. 

It is also clear from (5) above that increasing N beyond this limit, while it does not 
give significant improvements in terms of utilization, is harmful for the response time of 
the multiprocessor, in addition to the increment of related hardware costs. 

5.6.4 The Switching Element 

A key point for being able to build PIPES machines with a significantly high number 
of processing nodes (e.g. up to some hundreds) is the availability of an integrated 2 x 
2 packet router for the multistage network, the Switching Element (SE). Such a device 
has been defined, study and designed up to layout level at our laboratories, and silicon 
was provided by SGS-Thomson in the framework of a National Grant for microelectronics. 



www.manaraa.com

5.6 Hardware Architecture 255 

u .-----------------------------------------~ 

Figure 5.8: CPU utilization versus multiprogramming level 

The basic function implemented by the SE is the switching of data coming from one 
or both of its two input ports towards one of the two output ports, chosen properly on 
the basis of one bit of a tag information included in the data itself. In such a way it 
allows the construction of the self-routing networks described above. The normal routing 
is made on the basis of the indication given by the most significant bit of the tag. If it is 
1 the packet is sent through the lower output port of the SE, if it is 0 through the upper 
one. A mechanism is provided in the output ports to rotate left the tag indicator in or­
der to maintain in the most significant position the bit which will be used in the next stage. 

The SE has two internal buffers, one for each input port, to temporarily store up 
to 64 bytes (that could be either an entire packet, several packets or only a portion 
of a packet) if some routing conflicts arise inside the component or the next stage of the 
network is unable to accept further bytes. It routes the packets according a "cut-through" 
policy: that means that, when the internal input buffer is completely empty, the bytes 
constituting the packet cross the component as soon as they enter the input port, without 
waiting for the storing of the entire packet in the buffer before sending it to the next stage 
of the network. This is a way to minimize the crossing delay of the network and can lead 
to a scattering of the bytes of one packet through different stages of the network as shown 
in Fig. 5.9. 



www.manaraa.com

256 5 Implementation of a Parallel Logic + Functional Language 

bytes being transmitted from 
one stage to the next one 

~H-- \ 

Figure 5.9: An example of cut-through switching 

There are two ways to indicate the length of is a packet; either of them can be selected 
by the user by means of some external configuration pins . 

• A counter can be embedded in the packet, containing the number of the following 
data byte . 

• A ninth bit can be transmitted, in parallel to every byte, which always has the value 
o and rises to logical 1 only when the last data byte of the packet is sent. 

Additional features, again selectable by pin configuration, are one-to-all broadcasting 
mode and an error detection (CRC-based) mechanism. 

The SE has an internal synchronous structure and it is designed to be driven by an 
external clock source of any frequence from 100 kHz up to 20 MHz. 

The input/output ports use a quite classical four-phases protocol operating with two 
control signals Request and Acknowledge (see Fig. 5.10). These control signals can be 
internally double- sampled at the internal clock frequency (to minimize the probability of 
metastable states), and allow for the construction of interconnection networks in which 
any device has its own, independently running clock, without imposing the constraint of 
distributing a single system clock. 



www.manaraa.com

5.6 Hardware Architecture 

DATA 
VAUD 

REO ---r-J 

ACK 

Figure 5.10: Input/output protocol of the SE 

257 

The peak input-output rate of any port of the component is one byte every 100 ns 
if an internal double-sampling mechanism is disabled, or one byte every 200 ns if it is 
enabled. These figures refer to an SE embedded into an ideally fast environment, able to 
respond simultaneously to any stimulus, and gives a global throughput of 320 Mbit/s for 
the four I/O ports of the device. The minimun crossing delay for the component is 300 
ns when measured for the tag of the packet in a "buffer empty" condition. 

The number of transistors for the SE is about 35000. The technology used is the 
3-micron C-MOS, a current SGS process. The physical dimension of the die of the com­
ponent is 6.7 x 5.7 millimeters, and it is packaged in an 84-pin grid array support; the 
power dissipation is very small (about 200 m W at 20MHz) thanks to the extensive use of 
internal "domino" structures. 



www.manaraa.com

258 5 Implementation of a Parallel Logic + Functional Language 

PEO PEO 

PE 1 PE 1 

PE2 PE2 

PE3 PE3 

PE4 PE4 

PES PE5 

PEl PEl 

PE7 PE7 

PEa PEa 

PE i PEe 

PE 10 PE 10 

PE 11 PE 11 

PE 12 PE 12 

PE 13 PE 13 

PE 14 PE 14 

PE 15 PE 15 

Figure 5.11: Physical partitioning in PIPES 16 machine 

5.6.5 The Physical Prototypes 

Two different kind of prototypes of the machine have been designed and built: PIPES 16 
and PIPES 64; these two prototypes differ not only in the number of processing nodes, 
as suggested by their names, but in the implementation of the NLCN subsystem too. 

PIPES 16 is built around an NLCN whose SEs have an implementation based on off­
the-shelf components as registers, FIFOs, PLDs, flip-flops, etc. This came from the need 
to have available a parallel machine for software development before the end of the design 
of the custom SE. Such an MSI implementation of the NLCN works at a basic frequency of 
16 MHz, giving a minimun network crossing time of about 3/Ls. It provided just the basic 
switching function (e.g. broadcast and CRC generation are not implemented), and drove 
the physical partitioning of the whole system (see Fig. 5.11): the machine is made up 
from eight CPU cards, each containing two processing nodes, and eight NLCN cards, each 
containing four 2 x 2 SE functions arranged to form an equivalent 4 x 4 SE to minimize 
the number of off-boards connection. PIPES 16 has been operating since December 1987. 

PIPES 64 is instead based on the integrated version of SE. The availability of this 
custom circuit allows this parallel system. to be built in a highly modular fashion, being 
built around a single type of board. Thanks to the freedom in chosing NLCN topology 
on the basis of wireability and partitionability considerations, we arrange a slicing of 
the whole system as suggested in Fig. 5.4, and any board of PIPES 64 thus contains 
four processing nodes and a corresponding slice of the NLCN , according an approach 
that again minimizes the off-board connections. The custom-based implementation of 



www.manaraa.com

5.7 Conclusions 259 

NLCN works at a basic frequency of 20 MHz, giving a crossing time of 350 ns each stage, 
corresponding to 2.1 f./,S for the whole network. 

5.7 Conclusions 

5.7.1 Experience with Programming Style 

One might wonder how much the mix of OR-parallelism, backtracking and lazy evaluation 
is effective for parallelism exploitation. We tested it with the invertible simulator turned 
into a fault-finder described in [9], whose elegant IDEAL implementation relies heavily 
on such a combination of features. The fault-finder run by our OR-parallel K-LEAF sys­
tem exhibits a great amount of parallelism, in spite of the lazy constructors. As in the 
sequential case where lazy evaluation performs an intelligent control of backtracking, in 
the OR-parallel execution the same intelligent policy is applied to parallel split points, 
starting only parallel computations which are relevant to the final solution. 

Also standard algorithms, requiring problem decomposition, for example sorting, sim­
ulation, etc., can be naturally expressed for AND-parallel execution. A general unavoid­
able difficulty remains in modifying recursive programs in order to keep granularity of 
non-trivial grain. While in fib definition this is easily obtained with the change of the 
recursion base, in other cases, e.g. in programs recurring over lists, the needed changes 
could produce a less "abstract" program: 

fib(N) = sequentialJib(N) :- N < X. 
fib(N) = fib(N-1}j j + fib(N-2}j j :- N 2 X. 

where X = suitable_value...for...sequential_execution. 

5.7.2 Speed-up 

We report in Fig. 5.12 some figures obtained on PIPES about the speed-up ofthe following 
benchmarks: 

• 8-Queens: all-solutions of OR-parallel version of 8-queens problem; 

• Fib25: AND-parallel computation of fib (25); 

• Image: the image understanding program described in [32J. 

The above figures confirm the good performance of the model on such a distributed 
architecture. At present an overhead of about 30-60% is imposed by the execution of 
the parallel model on a single processor with respect to pure sequential execution. This 
is mainly due to the software emulation of memory management (demand-driven block 
allocation produces an overhead of 30% with respect to pure sequential execution), soft­
ware handling of non-local accesses, and lack of micro-context switching on remote read 
operations. 

Acknowledgement 
This work has been partially supported by ESPRIT Project No. 415. 



www.manaraa.com

260 

1 

14 

1 

10 

8 

6 

4 

2 

5 Implementation of a Parallel Logic + Functional Language 

100% , 
----~-----r---- ----~-----r---~~ 
I: : :/1..,'1 

• I I ,,* 
t I I " I 

____ ~I _____ II_____ ----~-----~: __ I 
1 .1 

I I I 4" I I 
1 1 1 ,. Fio25 1 
I I , ,," / I I 

. ----~-- --~- -- --~--- -t ----~- ---l~{~):Q ·-~eey:ns-_j.75% 
I ,," V I .. " 

." I "". I 
,," I I •• I 

1 1 1 1 I.. Im'age 1 
----~----~-----~----~----~- ~-7-- ~----, .". I I I 

,," I I I 
•• .. 1 1 

• 1 1 
1 1 1 I.'· 150% 

----~----~-----~----~ -- -:- - - - - ~ --.:~~ 
I • I ". 

I •• • I 1 I. 
1 •• 

1 .# 
1.# 

.. .. r 

---- .. ---- ... ---- ,," , '......: I 

~ ---- ~ --- -.... - - - - -... - - - - .. 
...... , I .... I I I 
"I I •• . .. 

". .1 
1#' '... I 

.( I.· I I I I .. .. 
-~-~---~.----1----~-----~----' 

1 
1 

". I ." I I I I I 
I ,,' I •• • I 
l' •• r 

.... , •• I 
.,. I."''' I I I I I I 

.~.- _ .... 't._ -- -~ -- -- ~ -- - - ""1- - -- -s- -- - -,. - -- - t 
I,," •• - I ..... 

# .. .. .... , 
" .. " I ..... . . 

2 4 6 8 10 12 14 16 

Figure 5.12: Speed-ups on PIPES 



www.manaraa.com

Bibliography 

1. W.C. Athas, C.L. Seitz: "Multicomputers: message-passing concurrent computers." 
IEEE Computer, pp.9-24, August 1988 

2. L. Augustsson: "Compiling lazy functional languages." PhD Thesis, Chalmers Uni­
versity of Technology, Goteborg, 1987 

3. G.P. Balboni, G. Giandonato, R. Melen: "A parallel architecture for AI-based real­
time applications." Proceedings of 1987 AFCEA European Symposium, Rome, 1987 

4. M. Bellia, P.G. Bosco, E. Giovannetti, G. Levi, C. Moiso, C. Palamidessi: "A two­
level approach to logic plus functional programming integration." Proceedings of 
the PARLE Conference, Lecture Notes in Computer Science 258, Springer-Verlag, 
pp.374-393, 1987 

5. P.G. Bosco, E. Giovannetti: "IDEAL: An Ideal DEductive Applicative Language." 
Proceedings of the 1986 Symposium on Logic Programming, IEEE Compo Society 
Press, pp.89-94, 1986 

6. P.G. Bosco, E. Giovannetti, G. Levi, C. Moiso, C. Palamidessi: "A complete semantic 
characterization of K-LEAF, a logic language with partial functions." Proceedings of 
the 1987 Symposium on Logic Programming, IEEE Compo Society Press, pp. 318-327, 
1987 

7. P.G. Bosco, C. Cecchi, C. Moiso: "Feasible computational models for logic plus func­
tional programming integration." ESPRIT Project 415, Subproject D, Deliverable 
D3, 1987 

8. P.G. Bosco, E. Giovannetti, C. Moiso: "Narrowing vs. SLD-resolution." Journal of 
Theoretical Computer Science, vol. 59, no. 1-2, North-Holland, pp.3-23, 1988 

9. P.G. Bosco, C. Cecchi, C. Moiso: "Exploiting the full power of logic plus functional 
programming." Proceedings of the 5th Conference and Symposium on Logic Program­
ming, MIT Press, pp.3-17, 1988 

10. P.G. Bosco, C. Cecchi, C. Moiso, G. Sofi: "The abstract parallel machine for 
IDEAL/K-LEAF." ESPRIT Project 415, Subproject D, Deliverable D5, 1988 

11. P.G. Bosco, C. Cecchi, C. Moiso: "Compilation tools for IDEAL/K-LEAF." ESPRIT 
Project 415, Subproject D, Deliverable D6, 1988 



www.manaraa.com

262 Bibliography 

12. P.G. Bosco, C. Cecchi, C. Moiso: "An extension of WAM for K-LEAF: a WAM 
based compilation of conditional narrowing." Proceedings of 6th Conference on Logic 
Programming, MIT Press, 1988 . 

13. T.H. Brus, M.C. Van Eekelen, M.O. Van Leer, M.J. Plasmeijer: "CLEAN: a language 
for functional graph rewriting." Proceedings of the 3rd Conference on Functional 
Programming Languages and Architecture, Lecture Notes in Computer Science 274, 
Springer-Verlag, pp. 364-374, 1987 

14. G.L. Burn: "Abstract interpretation and the parallel evaluation of functional lan­
guages." PhD Thesis, University of London, 1987 

15. M. Carlsson: "Freeze, indexing and other implementation issues in the WAM." Pro­
ceedings of the 4th Conference on Logic Programming, MIT Press, pp. 40-58, 1987 

16. M. Carlsson, K. Danhof, R. Overbeek: "A simplified approach to the implemen­
tation of AND-parallelism in an OR-parallel environment." Proceedings of the 5th 
Conference and Symposium on Logic Programming, MIT Press, pp. 1565-1577, 1988 

17. R.S. Cok: "A medium grain parallel computer for image processing." Proceedings of 
8th Technical Meeting of OCCAM User Group, pp. 113-124, March 1988 

18. J. Crammond: "A comparative study of unification algorithms for OR-parallel exe­
cution of logic languages." IEEE 'lransactions on Computers, pp. 911-917, October 
1985 

19. P.J. Denning, J.P. Buzen: "The operational analysis of queuing network models." 
ACM Computing Surveys, pp. 225-262, September 1978 

20. N. Dershowitz, D.A. Plaisted: <'Logic programming cum applicative programming." 
Proceedings of the 1985 Symposium on Logic Programming, IEEE Compo Society 
Press, pp. 54-66, 1985 

21. D. M. Dias, J.R. Jump: "Analysis and simulation of buffered delta networks." IEEE 
Trans. on Computers, pp. 273-282, April 1981 

22. D. M. Dias, J.R. Jump: "Packet switched in N logN multistage networks." Proceed­
ings of Globecom, pp.114-120, 1984 

23. L. Fribourg: "SLOG: A logic programming language interpreter based on clausal 
superposition and rewriting." Proceedings of the 1985 Symposium on Logic Program­
ming, IEEE Compo Society Press, pp. 172-184, 1985 

24. G. Giandonato, G. Sofi: "Parallelizing logic programming based inference engines." 
Proceedings of the 3rd International Conference on Supercomputing, International 
Supercomputing Institute Inc., pp. 282-287, 1988 

25. J .A. Goguen, J. Meseguer: "Equality, types and generic modules for logic program­
ming." In: D. DeGroot and G. Lindstrom (eds.): Logic Programming: Functions, 
Relations and Equations, Prentice-Hall, pp. 295-364, 1986 



www.manaraa.com

Bibliography 263 

26. 1. Hirschman, C. Hopkins, R. Smith: "OR-parallel speed-up in natural language 
processing: a case study." Proceedings of the 5th Conference and Symposium on 
Logic Programming, MIT Press, pp. 263-279, 1988 

27. J.W. Klop: "Term Rewriting Systems." Notes for the Summer Workshop on Reduc­
tion Machines, Ustica, 1985 

28. C.P. Kruskal, M. Snir: "The performance of multistage interconnection network for 
multiprocessor." IEEE Trans. on Computers, pp. 1091-1098, Dec. 1983 

29. A. Martelli, C. Moiso, G.F. Rossi: "Lazy unification algorithms for canonical rewrite 
systems." Proceedings of the Colloquium on Resolution of Equations in Algebraic 
Structures, Prentice-Hall, 1989 

30. C. Merlo, C. Moiso, M. Porta, G. Sofi: "Parallel Prolog for signal- understanding 
parallel machines." ESPRIT Pilot Project 26, Deliverable 14b, 1988 

31. R. Milner: "A theory of type polymorphism in programming." Journal of Computer 
and System Sciences, 17, 3, pp. 348-375, Dec. 1978 

32. C. Moiso, M. Porta, M. V. Oneto, G. Sofi: "Application of a logic parallel language: 
recognition of two-dimensional objects." Proceedings of the 4th Italian Conference on 
Logic Programming, Bologna, June 7-9, 1989 

33. Parsys: "Supernode SN1000 series brochures." THORN EMI Central Research Labs, 
Dawley Road, Hayes, Middlesex UB3 1HH, UK, 1988 

34. Parsytec: "Megaframe Supercluster brochure." PARSYTEC mbH, Julicher Str. 338, 
D-5100 Aachen, Fed. Rep. Germany, 1987 

35. S.L. Peyton Jones: "The Implementation of Functional Programming Languages." 
Prentice-Hall, 1987 

36. P.A. Subrahmanyam, J. H. You: "FUNLOG: A computational model integrating 
logic programming and functional programming." In: D. DeGroot and G. Lindstrom 
(eds.): Logic Programming: Functions, Relations and Equations, Prentice-Hall, pp. 
157-198, 1986 

37. D.A. Turner: "MIRANDA: a non-strict functional language with polymorphic types." 
Proceedings of the 2nd Conference on Functional Programming Languages and Ar­
chitectures, Lecture Notes in Computer Science 201, Springer-Verlag, pp. 1-16, 1985 

38. D.H.D. Warren: "An Abstract Prolog Instruction Set." Technical Note 309, SRI 
International (Oct.1983) 

39. D.H.D. Warren: "The SRI model for OR-parallel execution of prolog. Abstract design 
and implementation." Proceedings 1987 Symposium on Logic Programming, IEEE 
Compo Society Press, pp. 92-103, 1987 



www.manaraa.com

264 Bibliography 

40. D.H.D. Warren: "OR-parallel models of Prolog." Proceedings of the International 
Joint Conference on Theory and Practice of Software Development (TAPSOFT '87), 
Lecture Notes in Computer Science 250, Springer-Verlag, pp. 243-259, 1987 

41. H. Westphal, P. Robert, J. Chassin, J.C. Syre: "The PEPSys model: combining 
backtracking AND- and OR-parallelism." Proceedings of the 1987 Symposium on 
Logic Programming, IEEE Compo Society Press, pp. 436-448, 1987 



www.manaraa.com

Chapter 6 

Conclusions and Future Developments 

Alberto Ciaramella, Giancarlo Pirani, Claudio Rullent (CSELT) 

The speech understanding system that has been described in the preceding chapters rep­
resents a first prototype that is still open to evolution and improvement. Although the 
final result of the ESPRIT Project P26 represented a good achievement of our goals, we do 
believe that both the recognition and understanding stage should get better perlormance 
in order to make the overall system more accurate and robust. 

In particular, most of these new developments are being carried out in a project of 
the ESPRIT II program, which actually started in early 1989, including in the new con­
sortium two partners of the previous project, i.e., CSELT and Daimler Benz (formerly 
AEG). 
The new project is called SUNDIAL (Speech UNderstanding and DIALogue) and ad­
dresses the prq.hlem of speech based co-operative dialogue as an interlace for computer 
applications in the information service domain, with particular reference to the telecom­
munications environment. 

The following treatment will explain how we intend to make the developed system 
evolve from the state of a one-way speech understanding system to that of a real dialogue 
system which is capable of offering automated information services over the telecommuni­
cation network. Of course, a sketch is also given of the foreseen hardware updating which 
is necessary for an efficient implementation of the algorithms. 
The developments that are foreseen assume that the general architecture of the speech 
understanding system described in Fig. 1.1 of Chap. 1 will not be substantially altered; 
only some feedback communication from the understanding stage to the recognition one 
will be added. 

6.1 Recognition Algorithms 

The improvements of the recognition stage should be introduced to optimize the global 
performance of the overall system in terms of correct sentence understanding rate. Any­
way, as this global optimization is quite complex we are following the pragmatic approach 
of improving independently the performance of the recognition stage in terms of word 



www.manaraa.com

266 6 Conclusions and Future Developments 

P.26 system updated system 
1K words 1K-2K words 

high quality speech telephonic speech 
speaker trained speaker independent ! 
training with training with 

! isolated words continuous speech 
application indep. mixed application 

training indep. and dep. training I 
manual endpointing automatic endpointing 

no feedback from feedback from , 

understanding understanding i , 

Table 6.1: Features of the P.26 system and goals of the new developments 

accuracy (WA), defined as 1: 

WA = 100 * (1 _ substitutions + insertions + deletions) % (6.1) 
correct number of words 

where substitutions, insertions, and deletions are the number of substituted, inserted, and 
deleted words respectively. 

In fact, we are convinced that the recognition stage has to achieve the highest degree 
of accuracy in order to have the best performance of the linguistic processor in terms of 
both correct understanding and time consumption. 

As far as the general characteristics of the recognition system are concerned, the 
major developments that we intend to carry out for enlarging the scope of the system are 
summarized in Table 6.1. 

The items that stem from this development program are dealt with in the following. 

Lexicon. The choice of the lexicon is clearly dependent on the application. We do 
not foresee for the near future a dramatic increase of its size, deeming that an active 
vocabulary of 1K-2K words can be enough for many telecom applications. 

Anyway, linguistic phenomena will be taken into account when function-phrase entries 
have to be defined in the lexicon to improve the recognizer performance; also non-word 
entries will be added to take into account phenomena like hesitations, coughs, etc. 

Function phrases must be chosen according to either their degree of statistical rele­
vance within the given application or their degree of difficulty when trying to identify each 
constituent word at the acoustic level. The latter is the case, for example, with several 
monosyllabic connectives. 

However, that does not imply the need to impose a strict linguistic constraint at 
the recognition level, since each constituent word may maintain its own entry in the 
lexicon; simply, at the expense of a little increase of the lexicon size, function phrases 

-

lK.F. Lee, H.W. Hon: "Large-vocabulary speaker-independent continuous speech recognition using 
HMM." Proc. of the ICASSP '88, pp.123-126, April 1988 



www.manaraa.com

6.1 Recognition Algorithms 267 

help improving recognition performance. Non-word phenomena must also be modeled in 
some way. 

Input speech quality. When telephonic speech is considered, the main problems are 
represented by the noise and distortion due to the telephone line and by the different 
telephone handsets distributed over the network. 

These factors determine a high degree of variability and are a major source of per­
formance degradation. We intend to contend with this impairment by replacing discrete 
HMM with continuous density hidden Markov models (CDHMM), where the number of 
states and of Gaussian mixtures will be optimized by means of intensive experimentation, 
and including also differential cepstral coefficients into the parameters of the observation 
vector. As far as noise is concerned, the training database implicitly models this phe­
nomenon when the test conditions are homogeneous with the training ones. Furthermore, 
an explicit background noise model can be trained separately, while impulsive noise bursts 
should only cause minor degradation of the acoustic decoding performance. 

Speaker independence. Selection criteria to be used for the training data base will 
take into account the major sources of variability at the speaker level; for example, samples 
for each of the main regional intonations will be collected, and speakers' ages will globally 
span a range as large as possible. Obviously, a proper balance between male and female 
speakers is to be guaranteed. 

In order to carry out the experiments on the speaker independent system we have 
collected specific databases. A training database (MDB) and a testing database (FDB) 
have been collected relevant to no and 20 different speakers respectively, who uttered 
80 sentences (MDB) and 60 sentences (FDB) each. Utterances were collected through 
a normal telephone set connected to a PABX. Speech, sampled at 16 kHz with a 16-bit 
linear quantizer, was stored on WORM optical disk, for a total of about 3.2 Gbytes. 

Uttering style for training. When we collected the new speech database for training 
the models of the acoustic units, we chose to use continuously spoken sentences in order to 
be as close as possible to the uttering style that is employed by the user that addresses the 
understanding system. In this way, also the main coarticulation effects will be captured 
to be automatically included into the acoustic decoder, thereby improving its accuracy; 
for this purpose both intra- and inter-word coarticulation will be taken into account and 
properly represented by means of specific tree structures. 

Application dependence of training. We will investigate the improvement attain­
able by means of a training speech database that is at least partially application oriented. 
In particular, each speaker belonging to the training set was asked to utter 40 application 
sentences and 40 phonetically balanced sentences. To what extent the degree of applica­
tion dependence of the training database affects the recognition performance (and also the 
overall understanding system performance) will be carefully studied in the near future. 

Sentence boundaries. Detecting the end of a sentence is a simply stated, but hard­
to-solve problem. Integration of low level acoustic knowledge (energy-based endpointing) 



www.manaraa.com

268 6 Conclusions and Future Developments 

with high level acoustic knowledge (spectral modeling of silence and noise) and linguistic 
knowledge will be exploited. 

Feedback from understanding While for the P26 system the connection between 
recognition and understanding is unidirectional, the introduction is foreseen of a linguis­
tic feedback requesting either the acoustic evaluation of alternative parsed sentences, or 
the acoustic scoring of segments of the utterance with alternative, partially parsed word 
sequences. Also this process of recognition activation driven by linguistic analysis will 
have to be carefully designed to be able to cope with real time requirements. 

6.2 Real-time Hardware Implementation 

The next evolution step should imply an improvement of the system in ease of use, accu­
racy, and technology. As mentioned previously, the system will evolve to a full dialogue 
system, with remote speaker-independent telephone input without any console interaction 
and with telephone .synthesized output. Some of these improvements are larger in scope 
than the recognizer in itself, and new specific blocks have to be added, such as for example 
the dialogue manager, which in each case is more related to the understanding stage, and 
the telephone network interface, which will be interposed between the telephone network 
and the recognizer AID converter, with the capability of connecting and disconnecting 
the machine to and from a specific user call. 

We will not deal in detail with these general system upgradings outside the recog­
nition stage; we point out that some of these upgradings concern directly the hardware 
implementation of the recognition stage itself, which will provide: 

• a more asynchronous behaviour, for reacting to the external telephone environment 
(connect, disconnect) and to less regular user interactions, as experimented within 
the dialogue; 

• a higher accuracy, for handling a speaker-independent, telephone input application; 

• more robust sentence endpointing, since console interactions are not possible. 

These constraints require the addition of computational power in the recognition stage, 
for example the extraction of differential cepstral, but require also the improvement of 
accuracy in other algorithms, for example maximum-likelihood acoustic decoding. As 
efficient implementations of forward acoustic decoding algorithms and CDHMM require 
floating point representation, we intend to use floating point DSPs. This is a timely 
technological transition, since DSPs were still in embryonic form to comply with the time 
schedule of P26, but now they are a consolidated reality. Using modern floating point 
DSPs allows us not only to implement a larger set of algorithms, but also to gain other 
benefits like: 

• more powerful DSPs; 

• faster algorithm prototyping; 

• faster programming prototyping. 



www.manaraa.com

6.3 Understanding Algorithms 269 

As far as the first item is concerned, we point out that modern floating point DSPs have 
increased not only the computational accuracy, but also the memory available on the chip 
and addressable outside, the input/output capabilities, the internal number' of registers 
and even the clock rate. The most severe limitation we faced in P26 was in fact the limited 
addressing capabilities of DSPs for our application: we chose the TMS32020 as the best 
for this aspect, which could externally address up to 64K words (of 16 bits): this was 
quite large for 1985 technology, ,and meanwhile we had to implement specific hardware 
around this DSP in order to increase this address capability through paging: now instead 
the native addressing capability of the new floating-point TMS320C30 is 16Mwords (of 
32 bits), well appropriate for our requirements. 

The technological transition from integer to floating-point DSPs is not straightfor­
ward, since we have to re-implement our DSP firmware, but in this case we can benefit by 
both algorithms and programming fast prototyping. Floating-point DSPs allow algorithm 
fast prototyping, given that they assure the same accuracy obtained in the off-line simu­
lation, hence the phase of integer simulation between floating-point simulation and DSP 
programming is now completely skipped. Fast prototyping in programming is even more 
important in modern floating-point DSPs, since their architecture, more similar to tradi­
tional microprocessors especially in available memory address space and in the number of 
internal registers, allows us to use high level languages, for example C. 

We have to point out however that the use of C alone is not efficient for DSPs, since 
it produces a decrease of speed, which is the most 'important benefit of the DSP archi­
tectures: an order of magnitude of difference in computational time can be easily demon­
strated by comparing a C implemented versus an assembler implemented DSP algorithm. 
Hence, in order to obtain reasonably efficient implementations in a reasonable amount of 
programmer time, for floating-point DSPs we will observe the following guidelines: 

• implement in C language only the program control section, which requires less com­
putations; 

• use C callable assembler optimized libraries for implementing comon use functions, 
such as FFT, filters, etc.; 

• use assembler code only for implementing C-callable assembler optimized custom 
functions not available in the library used or for driving specific hardware related 
functions, as input/output. 

Moreover, in our new project we will use as much as possible of the standards and facilities 
provided by vendors. Furthermore, confirming our choice of the powerful VME bus, we 
will host the whole system in a SUN 4, equipped with commercially available floating­
point TMS320C30 DSP boards, using the C language and the SPOX library for firmware 
development. 

6.3 Understanding Algorithms 

An evaluation of what has still to be done to improve the speech understanding algorithms 
must start from the analysis of their limits in the current scenario (speaker dependent 
recognition algorithms and good quality voice signal) and from the target scenario where 



www.manaraa.com

270 6 Conclusions and Future Developments 

our speech understanding applications are envisaged (voice services over the telecommu­
nication network). 

The limits of the current system are more or less common to all existing speech 
understanding systems and will be examined in the following paragraphs. 

Linguistic coverage and system performance. A first aspect is that there are two 
contrasting requirements in a speech understanding application: from one side to have 
a large linguistic coverage and from the other to have good efficiency and good correct 
understanding rate. Unfortunately a very large linguistic coverage reduces constraints 
with the result of increasing the error rate; furthermore the larger search space reduces 
efficiency. 

We have seen that it is extremely dangerous to develop a large linguistic knowledge 
base by incrementally testing it only on written sentences (i.e. lattices containing only the 
correct word hypotheses): when testing it on real lattices efficiency problems are likely to 
occur and their solution can require a certain number of changes in the knowledge base. 

We do not envisage magic solutions to this problem: a great effort has been made to 
increase efficiency both by devising an efficient control strategy and by optimizing and 
rewriting the final version into the C language. 

A reasonable possibility is to carefully consider the selected application and to de­
cide to accept a certain level of linguistic coverage. In this way there is the risk of not 
understanding a user utterance because it is not within the system linguistic coverage. 

The problem of long sentences. What we have seen is that the effort of parsing very 
long sentences is not really worthwhile; in fact it increases enormously the search space 
while the probability of understanding them is not really good, both for the risk of errors 
at the recognition level (the longer the utterance, the higher the probability of errors) and 
for the risk of consuming the system resources (time and memory) before obtaining the 
solution. 

On the other hand, if the user has to reach a goal that cannot be fulfilled without 
using a long sentence, it becomes necessary to allow the user to reach his/her goal through 
the use of a set of interconnected sentences, e~ch of them followed by a system answer. 
In other words the system has to manage a dialogue with the user. From a certain point 
of view it seems that we are trying to solve a problem by introducing a greater one, but 
that is not true because for certain domains it is quite unnatural to interact with single 
utterances. That happens when the user goal has to be satisfied through a number of 
simple steps where each of them can depend on the results of the previous ones; in such 
case it is natural for the user utterances to refer to the contexts of the previous steps. A 
brief description of the what we are planning to do in the future in the dialogue field will 
be given later on. 

From the current scenario to the future one. In the current scenario it has been 
possible to reach an acceptable rate of correct understanding (87%) and a good efficiency 
(two or three seconds) within the system linguistic coverage. From the point of view of 
the understanding algorithms, the new scenario (speaker independence and telephonic 
quality of the voice signal) is likely to lead to the generation of lower quality lattices. 



www.manaraa.com

6.3 Understanding Algorithms 271 

With the term "lower quality" we mean mainly the fact that the number of word 
hypotheses could be larger (maintaining the same very low probability of a correct word 
missing from the lattice) and that the reliability of each word hypothesis (its score and 
its time limits) could be lower. 

For the understanding algorithms a lower quality lattice is likely to mean a large 
search space and a lower reliability of the generated phrase hypotheses. That leads to 
a lower efficiency and a higher error rate. The problem of reduced efficiency can easily 
mean an increase of the error rate too, as the the system resources (time and memory) 
are predefined and if a solution is not found within such limits the analysis fails. 

There are two main ways to preserve efficiency and correct understanding rate in the 
new scenario: to have faster algorithms with large amount of memory and to have more 
"reliable" algorithms. The first approach can reduce the error rate if the understanding 
algorithms are not able to find a solution within the available system resources. The 
second one is useful when the algorithms find an incorrect solution (i.e. a sentence that 
has not been uttered). 

Both kind of phenomena will have to be dealt with, but what it is not still so clear 
is the relative weight of the two phenomena. By now we have the feeling that the second 
one is likely to be the most frequent one. We are envisaging two different activities for 
the two different phenomena. 

Increasing performance through parallelism. In the first case the idea is to move 
towards parallel processing: the parsing algorithms studied have been shown to be easily 
parallelized and an experimental parallel LISP version (running on a pool of LISP ma­
chines) has been developed, starting from an intermediate LISP version of the parsing 
algorithms. 

Now the idea is to develop a parallel C parser starting from the current parserj this 
parallel parser should be first tested simply in a multitasking environment (like UNIX) 
and then tested in a real multiprocessing environment. 

At the moment this activity has not been started, as we prefer to evaluate the real 
lattices generated in the final scenario to see the relative relevance of the first phenomenon 
compared to the second one. Only at that point it will be possible to select, if necessary, 
the most suitable parallel machine (taking into account costs, number of processors, MIPS 
for each of them and finally the software environment available for parallel processing). 

Interaction between recognition and understanding. For the second phenomenon 
the best results should be obtained from the research concerning the recognition algo­
rithms. Nevertheless there are sources of errors that are on the border between recogni­
tion and understanding: they are connected to the way in which the word hypotheses are 
inserted into the lattice by the recognition algorithms and to the way they are used by 
the understanding algorithms. Particularly critical are the aspects connected to the treat­
ment of short words, the co-articulation phenomena and the combination of the scores of 
word hypotheses to obtain the scores of phrase hypotheses. 

A possible solution is to have a tighter but still highly controlled interaction between 
recognition and understanding algorithms. In particular the first idea is to have the pos­
sibility of a verification activity performed by the recognition algorithms on the solutions 
proposed by the understanding algorithms. 



www.manaraa.com

272 6 Conclusions and Future Developments 

The verification procedure. The procedure is described through the following steps: 

1. The understanding algorithms do not terminate as soon as a solution is selected by 
the Scheduler (the current situation) but the analysis continues until the system 
resources are used up. In this way none, one or more than one candidate solutions 
are obtained; their scores are not used to select the solution. 

2. Each candidate solution will be analyzed by the recognition algorithms. Each of 
them is usually characterized by the presence of gaps where short words with low 
semantic content are supposed to be present, although not detected by the recogni­
tion algorithms (or ignored by the understanding algorithms). For each gap a set of 
candidate words is obtained, taking into account the syntactic knowledge and the 
solution parse tree. In such a way a graph of words (not of word hypotheses) is 
generated; such a graph can be seen as a very specific "grammar". 

3. The recognition algorithms have to analyze each graph to find the best path, i.e. 
the most probable sequence of words. For each analyzed graph the result is then a 
sequence of words (the most plausible one) and a score. Note that the scores of the 
different graphs refer to the same time interval, so the critical problem of comparing 
scores pertaining to different time intervals is solved. 

4. The understanding algorithms select the path (sequence of words) with the best 
score and accept it as the solution. 

The advantage of the verification procedure. The main advantage of this approach 
is that in the first phase of the parsing a set of candidate solutions are found using 
constraints (linguistic and temporal constraints) that have been somewhat relaxed (think 
of the thresholds values, the missing short words, etc.) while the second phase makes a 
strict verification of these solutions. What is likely to happen is that at the end of the 
second phase it will be possible to select, say, the second solution instead of the first one 
because, for instance, the speech portion corresponding to a gap in the first candidate 
solution where a preposition was supposed to be, did not match such a preposition at all. 

Note that a typical problem is, e.g., that in a sentence like "leggimi due messaggi di 
Rossi" ("read me two messages of Rossi") the word hypothesis for "due" can have a score 
worse than the score of the sentence; in such a case the first candidate solution could be 
"leggimi ? messaggi di Rossi" ("Read me the messages of Rossi") that is linguistically 
correct too. That results by assuming the presence of an article "i" where "due" should 
be. The second candidate solution could be the correct one. 

When the verification of the first candidate solution is performed, the Markov chain 
for the sentence "leggimi i messaggi di Rossi" is matched against the speech signal while 
in the case of the second candidate solution the Markov chain is "leggimi due messaggi di 
Rossi". Even if "due" has not a good matching in that portion of the speech it is likely to 
have a better global score by matching it than -to match a "i" and to require a different 
alignment of the two words "leggimi" and "messaggi" (as they must now be much more 
adjacent or the matching of "i" would be quite bad). 



www.manaraa.com

6.4 The Role of a Dialogue Manager 273 

6.4 The Role of a Dialogue Manager 

Different application domains tend to stress different linguistic phenomena: certain prob­
lems are much more crucial for certain domains than for others. 

Mapping to pragmatic representation. An example is the complexity of the task of 
translating the semantic representation of an utterance into the pragmatic representation 
that is needed to execute the action able to satisfy the user requirement expressed through 
the utterance. As an example, consider the sentences "Ci sono messaggi per me'!" ("Are 
there any messages for me'!", "Qualcuno mi ha inviato dei messaggi"· ("Did someone send 
me any messages'!") and "Ro ricevuto dei messaggi'!" ("Did I receive any messages'!"). 

All these utterances have different semantic representations (their conceptual graphs 
refer to different concepts) but nevertheless the user goal is the same in the three caseSj 
therefore, they must have the same pragmatic representation so that the system action 
can be the same as well. This problem was not so serious in the case of the geographical 
domain as it is likely to be, for example, in the case of voice access to electronic mail. 

To deal with this problem means to find proper ways of performing a mapping from 
conceptual graphs to pragmatic representations. We are thinking of using frames to 
represent pragmatic knowledge and using abstractions to match the frame slots against 
the utterance conceptual graph. 

Referring to previous contexts. When more than one sentence is used to reach 
the user goal, sentences need to refer to previous contexts and themselves can create 
new contexts. As an example, the utterance "Ci sono messaggi di Rossi'!" ("Are there 
messages from Rossi'!") can be answered with the sentence "Ci sono cinque messaggi di 
Rossi" ("There are 5 messages from Rossi"). At this point the user can say "Leggimi i 
primi due" ("Read me the first two."). Using this utterance she/he refers to the first two 
messages of Rossi. 

Sometimes the reference to previous contexts is made in an implicit way (as in this 
case)j in others there could be an explicit reference to one of the previous contexts through 
the use of pronouns. The main problem is to solve the reference problem, i.e. to find the 
most probable context in which the utterance has to be interpreted. 
All the available knowlege should be used for this purpose: the reference markers in the 
case of an explicit reference, the available entities that are associated with the context 
(like Rossi's messages in the case of the example), the sentence given to the user by the 
system, etc. 

Repairing sentence understanding failures. When the understanding of a user 
utterance fails, the utterance could be understood incorrectly or it could be not understood 
at all. 

In the first case it is quite difficult to find a way of repairing the failure as the system 
is not conscious of not having understood correctly, unless in the rare cases where there 
are clear contradictions from which an incorrect understanding can be inferred. 

In the second case something can be done: the system can try to take over the control 
of the dialogue, reducing the user freedom. 



www.manaraa.com

274 6 Conclusions and Future Developments 

Note, however, that there are not miraculous solutions to understanding failures: 
reducing the user freedom means reducing the efficiency of the user interaction, as it is 
difficult to find a good position between the two extremes of a system-directed dialogue 
and a user-directed dialogue. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




