Research Reports

ESPRIT

Project 26 - SIP - Volume 1

G. Pirani (Ed.)

Advanced Algorithms
and Architectures for
Speech Understanding

Springer-Verlag

Research Reports ESPRIT

Project 26 - SIP - Vol. 1

Edited in cooperation with
the Commission of the European Communities

ol Lalu ZJI—EL'

G. Pirani (Ed.)

Advanced Algorithms and
Architectures for
Speech Understanding

Springer-Verlag
| Berlin Heidelberg New York London
Paris Tokyo Hong Kong Barcelona

Volume Editor

Giancarlo Pirani
CSELT

Via Reiss Romoli, 274
1-10148 Torino, ltaly

ESPRIT Project 26 “Advanced Algorithms and Architectures for Speech and Image
Processing (SIP)” has the objective to develop the algorithmic and architectural
techniques required for recognizing and understanding spoken or visual signals
and to demonstrate these techniques in suitable applications.

The work was planned in three parallel areas: speech analysis, image analysis, and
pattern recognition and understanding. Work on speech processing took two ap-
proaches, one statistical and one knowledge based. In image processing, various
algorithms were analyzed, compared and implemented, and different layer approa-
ches to the architecture for image feature extraction were considered. Medical and
industrial applications were used to test the tools developed and to study the issues
involved. '

ISBN-13: 978-3-540-53402-0 e-ISBN-13: 978-3-642-84341-9
DOI: 10.1007/978-3-642-84341-9

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con-
cerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or
parts thereof is oniy permitted under the provisions of the German Copyright Law of September 9,1965, iniits
version of June 24,1985, and a copyright fee must always be paid. Violations fall under the prosecution act of
the German Copyright Law.

Publication No. EUR 12821 of the

Commission of the European Communities,

Scientific and Technical Communication Unit,

Directorate-General Telecommunications, Information Industries and Innovation,

Luxembourg

Neither the Commission of the European Communities nor any person acting on behalf ofthe Commission is
responsible for the use which might be made of the following information.

© ECSC - EEC - EAEC, Brussels ~ Luxembourg, 1990
Softcover reprint of the hardcover 1st edition 1990

2145/3140- 543210 - Printed on acid-free paper

Preface

This book is intended to give an overview of the major results achieved in the field of
natural speech understanding inside ESPRIT Project P. 26, “Advanced Algorithms and
Architectures for Speech and Image Processing”.

The project began as a Pilot Project in the early stage of Phase 1 of the ESPRIT
Program launched by the Commission of the European Communities. After one year, in
the light of the preliminary results that were obtained, it was confirmed for its 5-year
duration.

Even though the activities were carried out for both speech and image understand-
ing we preferred to focus the treatment of the book on the first area which crystallized
mainly around the CSELT team, with the valuable cooperation of AEG, Thomson-CSF,
and Politecnico di Torino.

Due to the work of the five years of the project, the Consortium was able to develop an
actual and complete understanding system that goes from a continuously spoken natural
language sentence to its meaning and the consequent access to a database.

When we started in 1983 we had some expertise in small-vocabulary syntax-driven
connected-word speech recognition using Hidden Markov Models, in written natural lan-
guage understanding, and in hardware design mainly based upon bit-slice microprocessors.

At that time the USA and Japan were starting big projects with very ambitious objec-
tives in speech recognition and understanding: the former was supported by the Advance
Research Project Agency of the US Department of Defense (DARPA), while the latter
was related to one of the fundamental issues of the Fifth Generation Computer Project.

Given this scenario, the task we were undertaking was very challenging, and some fear
stemming from the comparison with these giants was unavoidable. However, at the end
of the project, the results obtained were quite satisfactory and allowed us to look at new
developments and applications in the second phase of ESPRIT with a significant degree
of confidence. We felt that we had given a small contribution to the fundamental goal of
the ESPRIT Program of reducing the technological gap that divided Europe from USA
and Japan.

Three partners guaranteed the stability and continuity of the project for its entire du-
ration: AEG (now Daimler Benz), CSELT, and Thomson-CSF. They formed the core of
the Consortium which allowed it to cope successfully with the departure of some partners
and to find some new ones with a remarkable technical skill and speculative attitude.
The success of the project was not only determined by the skill of the researchers who
took part in it but also by the sound management of the committee that steered it: this
committee was chaired with invaluable efficiency by G. Perucca (Project Manager) who
represented the Prime Contractor (CSELT) and was composed of the Technical Manage-
ment, Committee Coordinator, S.. Giorcelli (CSELT), and of the Technical Management

Vi

Preface

Committee Members representing the other partners: H. Mangold (AEG), T. de Couasnon
(Thomson-CSF), G.E. Hirsch (Ecole Nationale Supérieure de Physique de Strasbourg),
and, for the first half of the project period , P.V. Collins (GEC). Finally the valuable
supervision effort of the CEC Project Officer, T. Van der Pyl, is worthy of particular
mention.

ol L ZJI_E.LI

List of Contributors

Gian Paolo Balboni, CSELT, Italy
Piergiorgio Bosco, CSELT, Italy

Robert Breitschadel, Daimler Benz, West Germany
Carlo Cecchi !, CSELT, Italy

Alberto Ciaramella, CSELT, Italy

Davide Clementino, CSELT, Italy

Luciano Fissore, CSELT, Italy

Roberto Gemello, CSELT, Italy

Egidio Giachin, CSELT, Italy

Alfred Kaltenmeier, Daimler Benz, West Germany
Pietro Laface, Politecnico di Torino, Italy
Riccardo Melen, CSELT, Italy

Giorgio Micca, CSELT, Italy

Corrado Moiso, CSELT, Italy

Roberto Pacifici, CSELT, Italy

Roberto Pieraccini 2, CSELT, Italy
Giancarlo Pirani, CSELT, Italy

Jean Pierre Riviere, Thomson-CSF, France
Claudio Rullent, CSELT, Italy

Giorgio Sofi, CSELT, Italy

Giovanni Venuti, CSELT, Italy

ldied in 1990
2now with AT&T Bell Labs

Table of Contents

1 Imntroductiontothe Book 1
Giancarlo Piran: (CSELT)
1.1 Historical Notes 1
1.2 Overviewofthe Book 4
2 The Recognition Algorithms 7

Luciano Fissore (CSELT), Alfred Kaltenmeier (Daimler Benz), Pietro Laface
(Politecnico di Torino), Giorgio Micca (CSELT), Roberto Pieraccini (CSELT)

2.1
2.2

2.3

24

2.5

2.6

Introduction L 7
System Description oL o 9
2.2.1 System Overview 11
2.2.2 Feature Extraction 14
2.2.3 Mel-based Spectral Analysis. 14
2.24 Vector Quantization 0oL 16
2.2.5 The Phonetic Representation 19
Phonetic transcription o oL o oL 20
Underlying phonetic structureo 21
Contextualrules o0 23
Lexicon Structure Lo 24
2.3.1 Phonetic Segmentation Lo oL 25
Phonetic classification o 0oL 25
Phonetic segmentation L., 30
Word Representation oo 33
2.4.1 Three-Dimensional DP Matching 34
Matching costs 36
Duration of micro-segments L. 37
Reliability of micro-segments. 39
24.2 Lexical Access e 40
Experimental resultso o oo 43
Useof heuristics 47
Verification Moduleo 0oL 51
2.5.1 The Recognition Units 54
2.5.2 Model Estimation L 55
2.5.3 Experimental Results 56
254 Conclusions 59
Continuous Speecho 60

2.6.1 Control Strategies L 62

Table of Contents

Cascade integration 63

Full integration 63

2.6.2 Word Hypothesis Normalization 66
2.6.3 LatticeFilters 67
2.6.4 Efficiency Measures 68
2.6.5 Experimental Results 69

27 Conclusions e 72
Bibliography L 75
The Real Time Implementation of the Recognition Stage 79

Robert Breitschaedel (Daimler Benz), Alberto Ciaramella (CSELT),
Davide Clementino (CSELT), Roberto Pacifici (CSELT),
Jean Pierre Riviere (Thomson-CSF), Giovanni Venuti (CSELT)

3.1 Introduction e e 79
3.2 System Overview i i i e e e 82
3.2.1 Functions Overview 82
3.2.2 Architecture Overview 83
3.2.3 System Control and Synchronization Methods 87
3.24 System Run-Time Evolution 88
3.2.5 Details on the Asynchronous Stage Activity 92

3.3 Hardware Details, 95
3.3.1 DSP Board Description.o 95
DSP board architecture requirements 95

DSP board architecturedetails 95

DSP kernel e 96

3.3.2 Acquisition Board Description L. 101
Acquisition board requirements e 101

Acquisition boards architecture details 101

Acquisition functionso Lo 103

3.3.3 System Configuration 103

3.4 Firmware Blocks Details 105
3.41 Feature Extraction 105
Generalities 105

DSP1 control details 108

DSP1 algorithm details 111

3.4.2 Segmentation and Lexical Access 113
3.4.3 Markov Verifier Firmware 113
Generalities 113

Verification stage details 115

3.5 Some Details on Other System Functions 120
3.5.1 Program Loading and System Testing 120
3.5.2 Acquisition Firmware Details 121
3.5.3 Parameters Training Environment 123

3.6 System Evaluations L. 123
3.6.1 General Considerations 123

3.6.2 Single-Step Isolated Words Recognition 125

Table of Contents Xl

3.6.3 Two-Step Isolated Words Recognition 125

3.6.4 Single-Step Continuous Speech Recognition 126

3.7 Conclusions i vttt e e e e e 128
Bibliography e 131

4 The Understanding Algorithms 135

Roberto Gemello, Egidio Giachin, Claudio Rullent (CSELT)

4.1 Overview e e e e e 135
4.1.1 Introduction e 135
4.1.2 Some Basic Requirements of a Parser for Speech 137
4.1.3 Knowledge Sources from Dependency Rules and Conceptual Graphs 138
414 The Importance of Control Strategies 139

Two reasons for an effective control strategy 139

The role of expectations: Integrating top-down and bottom-up pars-
ing strategies L. 140
Deduction instances and search 141
Joining deduction instances L 141
4.1.5 Control Strategy and Operators 142
4.1.6 Representing Deduction Instances with Memory Structures 142
4.1.7 Implementation, Development System and Results. 143

4.2 Representation of Syntax o 143
4.2.1 Introduction 143
4.2.2 Interaction Between Syntactic and Semantic Knowledge 144
4.2.3 Dependency Grammar 145

Definitions e 145
Anexample 146
Relations between dependency grammar and context-free grammar 146
Remarks on dependency grammars 146
4.2.4 Morphological Agreement Rules 148
Structure of agreement rules L L 149
Definition of agreementrules 149
Morphological agreement checks 150
Morphological features statically associated to words 150
Agreement check modalities 151

4.3 Representation of Semantics.o oo o L. 151
431 Introduction 151
4.3.2 Word Information in the Dictionary 151
4.3.3 Caseframes and Conceptual Graphs 152
4.3.4 The use of Conceptual Graphs 153
4.3.5 Representation of the Utterance Meaning 154

4.4 The Compiler of Conceptual Graphs and Dependency Rules 155
44.1 Introduction 155
442 The Useof Dependency Rules 155
443 Integrating Conceptual Graphs and Dependency Rules - the Map-

ping Knowledge 156

444 Combining Different Conceptual Graphs 158

X

4.5

4.6

4.7

Table of Contents

4.45 A More Complete Example 159
Parsing - Conceptual Level 000 160
4.5.1 Introduction 160
4.5.2 Lexical Component and Model Component 161
4.5.3 Importance of a Score Guided Search 162
4.5.4 Search from the Point of View of the Lexical Component 162
Control strategy of the lexical component 162

4.5.5 Relations with the Model Component 163
4.5.6 Relations with some Former Systems 163
4.5.7 The Model Component 164
A simplified view: the problem solving paradigm 164

The knowledge source partition 165
Knowledge sources, facts and goals 165

4.5.8 Deduction Instances L. 166
4.5.9 Activation: Scores and Quality Factors 167
The ACTIVATION operator v 168

4.5.10 Control Strategyo 169
4.5.11 Optimality and Efficiency 170
4.5.12 The search space and the specialization relation 171
4.5.13 Description of the Operators 172
The VERIFY operator 173

The SUBGOALING operator 174

The PREDICTION operator 176

The MERGE operator 176
Parsing - Memory Structures 178
4.6.1 Introductiono 178
4.6.2 Representing DIs with Memory Structures: Some Problems 178
4.6.3 Canonical Deduction Instances 182
4.6.4 Phrase Hypotheses as Representativesof CDIs 184
Phrase hypotheses and AND-OR trees 185
Phrase hypotheses and contexts 186

4.6.5 Search Space of CDIs and Links Between PHs 188
4.6.6 The VERIFY Operator. 191
4.6.7 The SUBGOALING Operator 193
4.6.8 The PREDICTION Operator 193
4.6.9 The MERGE Operator 194
How links are exploited 195
Parsing - Dealing with Missing Words 197
4.7.1 Introduction 197
472 TheProblem 197
Types of frequently missing short words 198

The basicidea 199

The approach: the JVERIFY operator 199

473 How JVERIFY Works 200
Searchsolving 200

Default solving 200

Table of Contents bl

Integrating search and default solving 202

4.7.4 When to Apply the JVERIFY Operator 203

4.8 Experimental Results 204
4.8.1 General Performance Results 205

The coverage of the language model 205
Performanceresults, 206

4.8.2 Performance of the Short Word Treatment 207
4.8.3 Optimality and Efficiency 210
4.84 Some Specific Problems 212
Excessive gapsand overlaps 212
Non-optimality 213

Jolly words 214
Bibliography 215
5 Implementation of a Parallel Logic + Functional Language 219

Gian Paolo Balboni, Piergiorgio Bosco, Carlo Cecchi, Riccardo Melen,
Corrado Moiso, Giorgio Sofi (CSELT)

5.1 Overview. 219
5.2 Applications L 220
5.3 Languages e 220
5.3.1 The Language K-LEAF 220
5.3.2 The Language IDEAL 222
5.3.3 Parallel IDEAL and K-LEAF 223
54 Models of Computation 225
5.4.1 Compiling IDEAL into K-LEAF 226
5.4.2 Execution of K-LEAF: Flattening and Outermost SLD-Resolution . 226
5.4.3 Parallel Outermost Strategy 228
5.5 Language Implementation and Execution 229
5.5.1 The Parallel Virtual Machine for K-LEAF 231
5.5.2 Basic Compilation Scheme for Qutermost Strategy 232
5.5.3 The Actual Compilation Scheme 235
5.5.4 C-Emulation of Sequential K-WAM and Benchmarks 238
5.5.5 Execution of OR-parallel K-LEAF 239
5.5.6 Mapping AND-parallelism into OR-parallelism 245
5.5.7 The Actual Parallel Implementation. 246
5.6 Hardware Architecture 247
5.6.1 Architectural Overview 248
5.6.2 The Non-Local Communication Network 250
5.6.3 Performance Evaluation 252
5.6.4 The Switching Element 254
5.6.5 The Physical Prototypes 258
57 Conclusions 259
5.7.1 Experience with Programming Style. 259
572 Speed-up. 259

Bibliography, 261

XV Table of Contents

6 Conclusions and Future Developments 265
Alberto Ciaramella, Giancarlo Pirani, Claudio Rullent (CSELT)
6.1 Recognition Algorithms., 265
6.2 Real-time Hardware Implementation 268
6.3 Understanding Algorithms 269
6.4 The Role of a Dialogue Manager 273

ol L ZJI_E.LI

Chapter 1

Introduction to the Book

Giancarlo Pirani (CSELT)

1.1 Historical Notes

ESPRIT Project P26, “Advanced Algorithms and Architectures for Speech and Image
Processing”, started in October 1984, after a one-year feasibility study (since October
1983 to September 1984) in the ESPRIT Pilot Phase, and ended in September 1988 with
an overall effort of about 130 man-years.

Contractors involved were:

CSELT (Prime Contractor), Italy
AEG (now Daimler Benz), West Germany
Thomson-CSF, France

ENSPS (Ecole National Superiéure de Physique de Strasbourg), France,
from October 1986

Subcontractors involved were: Polytechnic of Torino, University of Torino, Italy, and
HITECH, Greece.

In addition, Plessey, United Kingdom, participated in the pilot phase, and GEC,
United Kingdom, participated until September 1986.

The main objective of the project was to develop a coherent set of techniques, both
algorithmic and architectural, for speech and image recognition and understanding, and
to validate the performance of these techniques by means of suitable demonstrators, in
order to assess their usability for industrial and commercial applications.

Two basic technical approaches were used: the former consisted in the integration
of low-level, statistics-oriented recognition algorithms with higher-level, knowledge-based
understanding techniques; the latter relied upon an extensive use of parallel processing
architectures.

Although one of the goals of the project was to investigate the feasibility of a com-
monality (at least conceptual) between the speech and image understanding architecture,
there was a distinct activity relevant to the development of the speech processing “branch”
of the system. In particular, it is possible to identify a self-contained “sub-project” which
was devoted to the implementation of a continuous speech understanding system.

Thebases of the speechrunderstanding project were laid down in the early 1980s; these
were the years in which the new DARPA project was being launched, after a five-year
hiatus, to re-think objectives and techniques after the results of the first program ended in

2 1 Introduction to the Book

1977 1. In that sense we could exploit the lesson drawn by that experience together with
the background in speech recognition, natural language understanding, DSP hardware,
and parallel architecture available in our ESPRIT Consortium.

This expertise, together with knowledge of the state of the art in the world, has steered
us to choose the large-scale objectives of our project in order not to be too ambitious,
to be realistic enough but to have at the same time sufficiently advanced contents in
algorithms and technology to justify a research effort of five years.

The system we decided to develop had to show the following characteristics:

® accept continuous speech from co-operative speakers

s accept natural language with limited syntactic coverage

e be trainable by the user with a vocabulary independent of the application
e use a close-talking microphone in a computer terminal room

¢ exploit a vocabulary of 1,000 words

e work in a constrained semantic domain, relevant to the inquiry of a geographical
database

o achieve nearly real-time performance

One of the basic decisions that was taken at the very beginning of the project was
that the logical architecture of the overall speech understanding system should rely upon
a clear separation between low level (recognition stage) and high level (understanding
stage). This is shown in Fig. 1.1, which gives also some anticipation of the general
structure of the system.

This type of architecture was decided also in the light of the difficulties experienced
during the first ARPA project, mainly stemming from its integrated approach to the
problem of speech understanding. In fact, one of the major advantages that we expected
in decoupling the problems was to emphasize the activities for improving the performance
of the two blocks separately.

The aim of the low-level stage is to find out a lattice of word hypotheses; each item of
this structure consists of an element of the lexicon (word), its acoustic likelihood, and its
estimated temporal boundaries. The lattice is the interface between the low-level speech
processing and the high-level linguistic analyzer. The main goal of the understanding
level is to process the lattice of word hypotheses and to produce a representation of the
utterance meaning. The meaning representation is used to access the database and to
generate the answer to the inquiry in natural language.

According to this decoupling philosophy a big effort was made to obtain a lattice as
accurate as possible in order to improve the overall performance of the system; this in-
volved a deep study of the acoustic-phonetic decoding techniques to obtain highly reliable
scores for the word hypotheses, with the principle that what is lost at the lower level can
hardly be recovered by the higher one.

The separation between the two levels of processing has also implied a corresponding
architecture from the hardware viewpoint, as Fig. 1.1 shows. This allowed us to define the
global hardware structure of the recognition stage, which was based upon two different

1D.Klatt, “Review of the ARPA Speech Understanding Project”, J. Acoust. Soc. Am., vol.62, no. 6,
pp-1345-1366, Dec.1977.

1.1 Historical Notes 3

ESPRIT PROJECT P26
ARCHITECTURE OF THE SPEECH
PROCESSING SYSTEM it

Figure 1.1: Global architecture of the speech understanding system.

Ol LA ZIJI_F.LI

4 1 Introduction to the Book

types of boards, expressly developed for the project: the former performs the A/D con-
version of speech together with analog amplification and filtering; the latter is equipped
with a DSP (TI TMS32020) and can perform both digital signal processing and pattern
matching operations. In this way we could concentrate from the beginning of the project
on the most appropriate structure of the front-end processor to produce the lattice in real
time.

On the other hand, the high-level algorithms of the understanding stage could be
implemented on a LISP Symbolics workstation, with a view to improving its efficiency
through a re-design and a re-writing in C language, and to studying the feasibility of a
parallelization of the algorithms that would be suitable for implementation on the parallel
architecture being developed.

1.2 Overview of the Book

The objective of this book is to describe the activities carried out in the part of ESPRIT
P26 devoted to developping the speech understanding system, and to present the results
that have been obtained.

The main body of the book is divided into four main chapters that address the four differ-
ent tasks (or work packages) of the project workplan that had to be carried out to develop
the final system: recognition algorithms, real-time hardware implementation of the recog-
nition stage, understanding algorithms, and parallel languages for parallel architectures.
For this reason the chapters are to some extent self-contained and autonomous.

Chap. 2 gives a detailed description of the recognition algorithms developed with the
main objective of designing an eflicient technique to extract an accurate lattice of word
hypotheses from a continuously spoken utterance.

As the size of the vocabulary was medium-large, the first approach tried was to exploit
a two-step strategy: the first step consisted in reducing the whole lexicon to a subset
through a segment classification into gross phonetic classes and a subsequent lexical access;
the second step was to give an acoustic score to the surviving words belonging to the
subset. Although a partly knowledge-based approach was attempted, relying upon some
skill at the University of Torino, the approach finally chosen was completely statistical.
In this way the Consortium could benefit from the expertise of AEG in statistical pattern
recognition for gross phouetic classification, of the Politechnic of Torino for lexical access,
and of CSELT for automated training of sub-word units HMMs (Hidden Markov Models)
and their use in the recognition process, through a suitable version of Viterbi decoding.

In the first phase of the project, this approach proved itself quite effective for a large-
vocabulary isolated recognition task; therefore the first outcome of this research was an
1solated word recognition system with vocabulary sizes in the range of 1000 — 20000 words.
This was a quite interesting by-product of the project, but when we switched to the real
goal of the project (1000 words and continuous speech) an extensive experimentation
showed an important result: even if very eflicient control strategies were invented to per-
form the hypothesization and the HMM scoring processes in an integrated and interactive
way, the one-step approach was still slightly more appropriate in terms of accuracy and
computation time.

In fact, the size of about 2000 words seemed to be the threshold that has to be exceeded
to make the two-step approach become more convenient.

1.2 Overview of the Book 5

All the choices relevant to the hardware architecture of the recognition stage are
described in detail in Chap. 3.

The general philosophy was to have an architecture based upon specifically developed
boards. These boards had to exhibit enough computational power together with the
possibility of being connected as intelligent peripherals to a commercially available family
of microprocessor boards (Motorola 68020) through standardized VME and VMX buses.
This type of architecture showed a noteworthy modularity that made it suitable for tasks
of different complexity and computational requirements.

The speech acquisition board was designed by AEG, while the DSP-based ones were
developed by Thomson-CSF. The choice of the TMS32020 processor was determined by
its larger addressable area with reference to both internal and external memory, at the
time when the selection was made (1985).

With the exception of the classifier module, all the firmware implementing the recog-
nition stage was written by CSELT, which also took on the task of integrating all the
hardware blocks into a unique system.

Whereas the recognition stage was the result of a joint effort of AEG, CSELT, and
Thomson-CSF, the understanding-stage algorithms and architectures were developed al-
most entirely by CSELT.

As Chap. 4 describes, the philosophy that led to the developed understanding algo-
rithms was to follow a knowledge-based approach. In fact, this approach was felt more
suitable for the integration of syntax and semantics as well as for the achievement of a
certain commonality between speech and image architectures.

When the project started we believed that we could take advantage of the new repre-
sentational tools developed after the end of the ARPA project, that were more powerful
and expressive than context-free grammars, even if more complex. In this way it was
possible to exploit the language constraints more efficiently for a system with its purpose
not limited to recognition, but including also meaning comprehension.

Conceptually, the basic philosophy was to start from a state-of-the-art system for
written natural language understanding and to extend its capabilities to deal with word
lattices instead of definite word sequences.

In fact, the réle of the understanding stage is to parse the word lattice to find the most
likely word sequence and to provide a formal representation of its meaning. We chose to
have the parsing strategy based upon a score-driven search that is capable of avoiding the
bottlenecks that are likely to arise when a lattice with some low-quality hypotheses is to
be processed. In this way the system can evolve better towards applications where the
quality of speech is impaired or speaker independence is required.

The developed approach started from the decision to use two separate representa-
tions, for semantic and syntactic knowledge respectively. These representations are then
combined into common parsing rules through an automatic compilation which exploits
also the property that the “caseframe” formalism, chosen for semantics, is characterized
by structures which are similar to those of the “dependency grammar” formalism chosen
for syntax.

An additional characteristic of the developed parser is its ability to perform correctly,
when necessary, without having to rely upon hypotheses regarding words that are both
short and semantically irrelevant, like determiners and some prepositions.

Finally it was decided to derive a formal and non-ambiguous representation of the

6 1 Introduction to the Book

meaning of the spoken sentence in a connected caseframe format at the end of the parser
process, which is used both for completing word recognition and understanding.

One of the most challenging objectives of the project was also the design of a parallel
architecture that would allow the understanding task to achieve real-time performance,
both for speech and image. Actually, at the end of the project the parallel architecture was
available, but there was not enough time to insert the speech understanding algorithms
into such an architecture.

Although this book is devoted essentially to the description of the speech understand-
ing system, we decided to make it more complete, including also a chapter which describes
the basic principles of the design of the parallel architecture, focusing on the specification
of a parallel symbolic programming language that permits its efficient exploitation.

Therefore, Chap. 5 points out how the specific objective of the activity on the archi-
tecture was to show the feasibility of a parallel machine with about 1 GIPS, medium cost,
small volume, standard paackaging, and no communication bottlenecks; from the software
viewpoint the goal was to show the feasibility of a problem-oriented parallel PROLOG on
a distributed-memory machine, parallelizing significant understanding tasks.

From the technological point of view, the choice of INMOS transputers was made
in order to have a very modular, powerful structure based upon a network of these PEs
(Processing Elements) with an outstanding ease of communication.

Chapter 2

The Recognition Algorithms

Luciano Fissore (CSELT), Alfred Kaltenmeier (Daimler Benz),
Pietro Laface (Politecnico di Torino), Giorgio Micca (CSELT),
Roberto Pieraccini (CSELT)

2.1 Introduction

Subtask 2.1 of the P26 project was devoted to the study of the problems related to the
development of the front-end of a speech understanding system. In the early stages of
the project it was decided to separate the front-end, referred to in the following as the
recognition module, from the understanding module, that deals with syntaz and seman-
tics. This decision was drawn taking into account several considerations mainly based on
a practical point of view: the research groups working on Subtask 2.1 were at their first
experience with speech understanding systems and their background was mainly in devel-
oping systems for small-vocabulary isolated and connected word recognition. Approaching
the speech understanding problem required a strong effort both in knowledge acquisition
and software development. For instance, methodologies for dealing with phonetic tran-
scriptions of lexical items had to be developed from the beginning. More important was
the lack of any practical feeling about the problem. Nobody knew (and very few in the
world did at that time) what performance could be realistically achieved using a 1000-
word vocabulary with a system based on sub-word unit modeling, hence which integrated
strategy should be planned to attain a reasonably good understanding of the spoken sen-
tences. The choice of a two-module system with a one-way interaction seemed the most
appropriate for starting to acquire the proper knowledge on the problem. Besides, as peo-
ple working on the two modules belonged to different groups and used different techniques
as well as different programming languages (stochastic modeling and FORTRAN for the
recognition group, knowledge-based parsing and LISP for the understanding group), the
best solution looked like the one by which the development of the two modules did not
have to suffer from unavoidable mutual time dependencies. The decision to consider the
recognition and the understanding as two clearly separated modules with a bottom-up
interaction was followed by the decision to make a time-wise separation among the two
sub-systems. The understanding process should start only when the sentence has been
completely analyzed by the recognition module. Again, it is advisable to stress the fact
that such a strategy could not be the most suitable for a speech understanding system.
Itrisswell known thatrperceptualiexperiments, like those reported in [38], demonstrate, for
example, that the linguistic analysis of an unknown utterance by human beings begins as
soon as the first words have been perceived but, again, the practical choice of designing,

8 2 The Recognition Algorithms

testing and improving each module separately was considered more realistic. Furthermore
we had to avoid the risk of replicating some errors made in the late ARPA SUS project
[27] where most of the systems never met their project goals and where most of the care
was taken in the design of the interaction between the modules rather than in obtaining
the best performance by every single subsystem.

Once the kind of interaction between recognition and understanding was decided, it
had to be taken into consideration which form such an interaction had to have. Given the
above preliminary remarks we considered only two possible reasonable forms: a string or a
lattice of word hypotheses. The first solution was attainable by implementing a standard
decoder [23] that, given an acoustic/phonetic model of the words, yields the best sequence
of lexical items according to a defined optimality criterium (like for instance maximum
likelihood). This solution presents some disadvantages when used within a speech under-
standing module. First it must be noticed that every error generated by the recognition
module (substitution, deletion or insertion of a word) is propagated to the understanding
module without any possibility of being recovered. Hence the accuracy of the recognition
part must be high enough to obtain a good understanding rate; this can be achieved by
introducing some kinds of linguistic constraint at the acoustic/phonetic decoding level.
Linguistic constraints can be used either under the form of a regular grammar or of a
n-gram stochastic model, like for instance word trigrams [24]. The regular grammar has
the disadvantage of being very rigid about the allowed sentences, while the trigram model,
to be effectively usable, needs an enormous database of text for the trigram probabilities
to be estimated. Moreover a linguistic constraint at the recognition level represents a
replication of a knowledge source already present in the understanding module. The sec-
ond solution, that interfaces the recognition and the understanding subsystems in terms
of a lattice of words, seemed to be a more general approach that includes, as a byproduct,
also the best-string-of-words solution. A lattice of word hypotheses is a database whose
items consist of 4 pieces of information: vocabulary word identifier, time location of the
hypothesis, explicated into beginning time and ending time, and its likelihood score. A
sample word hypotheses lattice 1s shown in Figure 2.1. This strategy is in compliance
with the generally adopted criterion in speech recognition that attempts to delay every
decision to the moment when enough knowledge is available. Furthermore, if the lattice of
words is properly computed and relevant hypotheses are not purged before they are given
to the understanding module, it does not need to be built using linguistic constraints. The
use of linguistic constraints during the generation of the lattice simply changes the scores
of the word hypothesis (again if no purging is done). That operation can be done at the
understanding level, giving the very same results but avoiding an unnecessary duplication
of the knowledge sources.

An additional issue of the overall project was system effectiveness. Good performance
can be obtained only as a result of intensive experimentation. When the response time
of an experiment exceeds reasonable values, tuning a module or comparing different tech-
niques becomes impossible. Thus, most of the choices, like discrete density HMMs versus
continuous density ones or lexical preselection based on coarse phonetic classes, reflect
the need to trade higher accuracy for reasonable computational load. Furthermore, as
a real-time system for continuous speech was the target of the project, several design
choices were made on the basis of the technology at hand.

Although the goal of this Sub-task was continuous speech recognition on a 1000-word

2.2 System Description 9

m 141 bagna m
guaie iseo gli enna__ nato rienza
qual gli_ fiume lbagrnana| hanno
valli giglio nei_dalle mar Ila_;no
po__ lesina nel dai alla tiva
dei_ umbri dal hanno fapno
nei_ cime etna amato ung
quanti sinni getta enna _ trigng
acqua esce che una allo_
guante isole adda uno menag.
avisio che mar altg llg
agli est_ nera ngrd provincia
cusna mesima elba arno Ro oon_
zona deaii, lunghe alla_ tra [+ {o]a Y
sud esce umbrg meng dal
negli neali maggiori nello
esino aagli non_ ledro

Figure 2.1; A sample word hypotheses lattice

vocabulary, nevertheless many resources were devoted to the task of isolated word recog-
nition because most of the problems are common. It has been demonstrated that the
techniques developed for the isolated word task can be extended to continuous speech.
Hence particular attention has been devoted to the use of algorithms that do not take
advantage on the constraints given by the simpler isolated words recognition task. After
the above discussion we must conclude that the architecture of the speech understanding
system developed in P26 is not to be considered as “the solution” to the speech under-
standing problem, but rather as a test-bed of different modules and algorithms for the
investigation on two major problems of speech understanding: how to generate word hy-
potheses in continuous speech and how to parse a lattice of scored word hypotheses. These
modules can be considered as a baseline for building more sophisticated architectures and
control strategies.

2.2 System Description

In the automatic speech recognition area significant results have been achieved in research
projects by using pattern recognition and stochastic modeling methods {33]. Following
these paradigms, several commercial products have been developed and marketed that
perform very well for simple tasks and in constrained conditions (single speaker, limited
vocabulary, isolated words) [6, 37]. Nevertheless, several difficult tasks and applications
still exist that need further research and engineering efforts to achieve systems that are
really useful and widely acceptable by the end users.

10 2 The Recognition Algorithms

Office dictation systems, voice-activated telephone dialing and information access with
large vocabulary are emerging as realistic and useful applications.

These applications share the need of fast accessing large vocabularies of several thou-
sand words, a difficult task even for speaker dependent systems. As the number of words
to be discriminated is large, it is not practically feasible to collect thousands of templates,
thus it is mandatory that lexical knowledge is built from a phonetic transcription of the
orthographic form of the words. To this aim, sub-word recognition units must be defined,
that can be trained from a reasonably small size learning vocabulary and used as building
blocks for the words of any lexicon. Furthermore, in order to reduce the computational
complexity of the pattern matching process, the search for the best matching words must
be as far as possible focused. The reduction of the searching space can be obtained by
carefully exploiting the structural constraints that a lexicon imposes at the phonologic
level [49, 43] by using the hypothesize and test paradigm. According to this strategy,
elsewhere called the two-step approach, a vocabulary subset to which the utterance is
estimated to belong is hypothesized on the basis of a description that allows a fast search
to be performed. Second, a more detailed and time-consuming verification process is ac-
tivated only for words belonging to that subset [24, 26, 29, 21]. Different approaches
can be used in the preselection step. The search can be carried out for all words in the
vocabulary through a very simple and approximate description designed on the basis of
heuristic and pragmatic knowledge [26]. As this kind of approach relies on the detection
of word boundaries, it cannot be directly applied to continuous speech.

A less heuristic method is reminiscent of perceptual models of word recognition such
as those introduced in the Cohort Theory and in the Phonetic Refinement Theory [43].
It avoids matching all words by characterizing each lexical entry by means of a partial
phonetic description, so that acoustically similar words are clustered together {22]. From
the automatic recognition point of view this is important because broad phonetic classes
can be hypothesized more reliably than detailed phonetic segments. The effectiveness of
the latter approach, in terms of preselection capability, has been evaluated by examining
the statistical properties of large vocabularies under the assumption of a correct partial
description of the words [54, 47, 16, 8]. For instance, as far as Italian language is concerned,
describing a 13747 word vocabulary by using only six broad phonetic classes, 7225 words
can be uniquely identified, while the maximum and average size of the subset of words
bearing the same description is 34 and 1.5 respectively [20]. The results of these statistical
analyses, however, do not take into account segmentation and classification errors. These
errors depend on the inherent variability in speech and occur even if the acoustic-phonetic
module must discriminate among a limited number of gross phonetic categories. Moreover,
lexicon specifications made on the basis of a reduced set of symbols can lead to small
redundancy, that is, a small distortion occurring on a string of symbols corresponding
to a set of words is likely to perfectly fit the representation of a different set of words.
Lexical access must be performed, therefore, through error correcting procedures that face
the problem of high confusability of partial descriptions of words by generating a suitable
set of likely candidates. Although word subsets larger than those predicted by an error
free analysis are hypothesized, the results of several experiments, referring to different
languages [31, 52, 47, 22, 7] show the substantial preselection capability of the method
even in the presence of classification errors.

This hypothesize and test paradigm has been chosen first for developing a speaker-

2.2 System Description 11

dependent isolated word recognition system with a vocabulary ranging from 1000 to 20000
words. Then the possibility has been analyzed of using such a preselection stage in a
continuous speech recognition system. An original strategy has been devised for using
the two-step approach in the word lattice generation, even if, in the final demonstrator,
the single-step approach proved to be more effective due to the low size of the application
vocabulary (1000 words). Nonetheless we will report in detail the work on the the stage
approach because we think it is of practical interest when the size of the vocabulary
increases.

In the two-step approach a first words preselection is carried out by segmenting and
classifying the input signal in terms of broad phonetic classes (plosives, fricatives, vowels,
etc.) To achieve high performance, a lattice of phonetic segments is generated, rather
than a single sequence of hypotheses. The lattice can be organized as a graph in a
structure referred to as “micro-segmentation”. Words are hypothesized by matching the
micro-segmentation graph against the models of all vocabulary words. A model is a
phonetic representation of a word in terms of a graph accounting for deletion, substitu-
tion, and insertion errors. A modified Dynamic Programming (DP) matching procedure
(three-dimensional DP or 3DP) gives an efficient solution to this graph-to-graph matching
problem.

Hidden Markov Models (HMMs) of sub-word units are the basis of a more detailed
knowledge in the verification step. The word candidates generated by the previous step
are represented as sequences of diphone-like sub-word units, and the Viterbi algorithm
evaluates their likelihood by observing sequences of labels, associated with each centisec-
ond of the input signal, obtained by vector quantization of 18 cepstral parameters.

To reduce storage and computational costs, lexical knowledge is organized in a tree
structure where the initial common subsequences of word descriptions are shared, and a
beam-search strategy carries on the most promising paths only.

This strategy of lexical access has been applied to vocabularies of different size and
complexity. Large-scale experimentation has been possible because all models can be
trained without hand labeling or segmentation, allowing a ready adaptation to new vo-
cabularies and to new speakers.

2.2.1 System Overview

The modules developed at the recognition level can be divided into two groups: those in-
volved in the development and training phase and those involved in the recognition phase.
Some modules, like for instance feature extraction, are used in both phases. Figures 2.2
and 2.3 give sketches of the two phases. The FEATURE EXTRACTION module is
in charge of computing a parametric representation of speech at each 10 msec frame.
The VECTOR QUANTIZER additionally reduces the redundancy of the patterns by
associating a symbol with each speech frame through a codebook of spectral vectors.
The PHONETIC CLASSIFIER associates with each frame one or two coarse phonetic
labels, while the PHONETIC SEGMENTER detects segments belonging to a given
phonetic class and represents them through a lattice of phonetic hypotheses.

The LEXICAL ACCESS matches the segment lattice with the coarse phonetic repre-
sentation of the words that are arranged into a PCL tree (Phonetic Class Lexicon) and
gives a list of candidate words.

12

CODEBOOK
TRAINING

4

H»(CODEBOOK

2 The Recognition Algorithms

VECTOR

™ QuanTIZER

TRAI

HMM

NING

FEATURE PHONETIC LABELED L; WORD
exTRACTTON [—1>] CLASSIFIER e LASELED TRANSLATOR
TRAINING & COMPILER
TRAINING TRAINING
SPEECH PARAMETERS DICTIONARY
Y \ A
proNeTIc | | pHoneTIC | | ”ﬁlﬁgi?e
CLASSIFIER SEGMENTER AL

Figure 2.2: Modules active in the training phase

CODEBOOK

FEATURE VECTOR HMM
— > —>
INPUT EXTRACTION QUANTIZER VERIFIER OUTPUT
SPEECH WORD
v 3
HMM
PHONETIC PHONETIC LEXICAL TREE
CLASSIFIER SEGMENTER ACCESS COMPILER
A A
PARAMETERS @
WORD PCL PCL
———{ TRANSLATOR » TREE B TREE
& COMPILER COMPILER
ORTHOGRAPHIC
DICTIONARY

Figure 2.3: Modules active in the recognition phase

2.2 System Description 13

The WORD TRANSLATOR gives a phonetic representation of words starting from
the orthographic description, while the WORD COMPILER gives a word representa-
tion in terms of sub-word units.

This representation is used to build the PCL tree, by the PCL TREE COMPILER
or a HMM (Hidden Markov Model) state tree through the HMM TREE COMPILER
since each sub-word unit is acoustically represented by a HMM.

The HMM VERIFIER performs a matching between the symbols given by the vec-
tor quantizer and the HMM state-tree representation of the words. Finally the CON-
TROLLER controls the information exchange between the lexical access and the HMM
verifier. The information flow is bidirectional between the modules in the sense that,
depending on the application (isolated words or continuous speech), constraints can be
propagated from the lexical access to the verifier and vice versa.

Training the system from scratch requires four steps:

e Codebook generation: the Feature Extraction module performs a Mel-based cep-
stral analysis of the signal.The signal is collected through a head-mounted micro-
phone, low-pass filtered at 6 KHz, and sampled at a 12 KHz rate. An FFT analysis
is performed on each 10 ms frame, over 20 ms overlapping Hamming windows. At
each frame, a cosine transform is applied that produces a vector of 18 cepstral coef-
ficients. A simple endpoint detector extracts the portion of the signal corresponding
to the uttered words on the basis of the energy of the frames. A fixed amount of
the initial and trailing silence is kept to prevent occasional deletion of initial and
final weak consonants. The Vector Quantization (VQ) module associates with every
speech frame a label belonging to a finite alphabet of acoustic symbols {codebook);
these symbols are used as an observation sequence by the HMMs training and verifi-
cation modules. The VQ codebook is generated using the LBG clustering algorithm
[35, 4, 3]. All experiments were performed using 7-bit speaker-dependent codebooks
(128 codewords).

¢ Sub-word units training: the Word Translator rewrites, according to a set of
phonologic rules, the orthographic description of a each word into a sequence of
sub-word recognition units. This sequence is then compiled, by the Word Compiler
module, into its corresponding HMM chain that is trained through the Forward-
Backward algorithm [23]. The transition and emission probabilities of each sub-word
unit model are obtained by processing all words of a properly designed training vo-
cabulary. Trained units can be used as building blocks of the words of any vocab-
ulary, and the Viterbi algorithm can estimate the likelihood that a given utterance
corresponds to a word in the vocabulary. It is worth noting that none of these pro-
cedures need labeled speech, or human interaction. On the contrary, an important
byproduct of stochastic modeling of sub-word units is that a speech database can
be automatically segmented and labeled. In fact, once the models are trained, the
Viterbi algorithm can estimate the best path through the states of the HMM chain
corresponding to a known utterance, and the boundaries of the units composing the
word or the sentence can be detected by a traceback procedure.

e Phonetic Classifier training: this module computes, from a previously labeled
speech data base, the parameters of the frame by frame Phonetic Classifier. The

14 2 The Recognition Algorithms

Phonetic Classifier estimates the likelihood that a cepstral vector belongs to a set of
broad phonetic classes.

e Estimation of Phonetic Segments matching costs: adjacent frames with the
same phonetic label are collapsed into segments by the Phonetic Segmentation mod-
ule. A statistical estimation procedure generates the costs for the substitution, in-
sertion and deletion of segments (matching costs). As will be detailed in Sect. 2.3.1,
this module describes an utterance in terms of a lattice of phonetic hypotheses rather
than by a single sequence of segments.

2.2.2 Feature Extraction

The selection of a good parametric representation of acoustic data is a crucial task in
the design of any speech recognition system. Most parametric representations described
in the literature may be divided into two groups: those based on the Fourier spectrum
and those based on the linear prediction spectrum. The first group comprises filter bank
energies and cepstral coefficients derived from those energies. The second group includes
linear prediction coeflicients (LPC). In [13] a number of parametric representations have
been compared, and a clear performance advantage of the Mel-based cepstrum over all
other parameter sets has been demonstrated.

2.2.3 Mel-based Spectral Analysis

A Mel-based spectral analysis is performed using a filter bank centered on the criti-
cal bandwidths of the human auditory system. Acoustic information, at the primary
perceptual level, is analyzed into so called frequency groups. These groups are nearly
logarithmically spaced, starting with small bandwidth at low frequencies. The spacing of
these frequency groups defines a scale for the frequency selectivity of the human ear and
is called the Mel-scale.
The frequencies and bandwidths of the 18-channel filter bank used in this project ([4])
are illustrated in Figure 2.4 and Table 2.1 respectively.

Speech signal is collected through a close-talk microphone and linearly digitized with
a 12-bit accuracy at a 12 kHz sampling rate. Spectral analysis is performed every 10 msec
using Fast Fourier Transform over 128 samples with an overlapping Hamming window
of 256 samples. Finally, cepstral coefficients C; are computed according to the following
formula:

Ng
Ci=ZLog(Ej)-cosi(j———1~)—7L ,i=1,...,Np— L. (2.1)
= 2'Np

where Np is the number of filters and F; are the log-energies of each band.

Figure 2.5 further illustrates the Mel-based analysis. The first plot is related to
the power density spectrum of a vowel segment computed using FFT, and the second one
shows the corresponding Mel-based approximation. Channel vectors are not optimal para-
metric representations of speech signals, because their components are highly correlated.
The first cepstral coefficients have a straightforward physical meaning: C, is proportional

to the sum of the logarithms of the energies of each band, while C; represents the ratio

2.2 System Description

A(f) [dB]

-10

-20

-30
0.1

Band No. | Freq. Cutoff (Hz) | Central Freq. (Hz)
1 187 280 229
2 280 374 324
3 374 476 422
4 476 588 529
5 588 710 646
6 710 850 77
7 850 1009 926
8 1009 1186 1094
9 1186 1382 1281
10 1382 1606 1490
11 1606 1868 1732
12 1868 2167 2012
13 2167 2522 2338
14 2522 2942 2724
15 2942 3456 3189
16 3456 4110 3769
17 4110 4950 4510
18 4950 6071 5482

Table 2.1: Sub-bands of the filter bank according to Mel scale

el
IR

!

Pigure 2.4: Frequency characteristics of a Mel-based set of filters

15

16 2 The Recognition Algorithms

-10 -10 H
~ '5‘ -
m o
E mad
e -30 & -30 -
i 3
3 a
a =
-50 -50 l | 1 |
0 0.2 0.4 0 0.2 0.4
NORM.FREQUENCY NORM. FREQUENCY

Figure 2.5: FFT and Mel-based vowel spectra

between low and high frequencies. Furthermore, cepstral coefficients C; to Ny — 1 do not
depend on the frame energy. A two-dimensional histogram of the first and the second
coeflicients, computed over 5 minutes of speech produced by an adult male speaker, is
shown in Figure 2.6.

Cepstral coefficients obtained by means of the DCT transform have the interesting
property of being ordered according to their variance, with the greatest variance coming
first. This allows higher-order coefficients to be discarded without affecting system per-
formance, since low variance coefficients convey correspondingly low information about
the signal. Channel and cepstral variances are compared in Figure 2.8. A plot of the
cumulative variance of the cepstral coefficients (a) and of the recognition rate (b) for the
difficult task of minimal pair discrimination [11] is shown in Figure 2.7. C; accounts for
42 % of the global variance, C; for 18 %, C3 for 12 %. More than 90% of the variance is
accounted for by the first 9 cepstral coeflicients.

2.2.4 Vector Quantization

Vector quantization is an efficient technique of data reduction that still maintains the
information needed to characterize different sounds.

Vector quantization allows an input vector = (21, 23,...,z:) to be replaced by a vector
v = (¥1,%2, .- .,yx) drawn from a finite reproduction alphabet of N elements A = (y; : 1 =
1,2...N) (the codebook), that minimizes a given distortion measure.

As a matter of fact each vector of cepstral parameters is compared with a finite set
of reference vectors: the nearest one, according to the distance measure, is chosen to
represent the input vector. In this way the speech signal can be represented by means
of a sequence of “codewords”, namely labels related to the reproduction vectors. If the
dimensionality of the reproduction vectors is equal to one, the technique becomes the well
known scalar quantization.

2.2 System Description

COEFFICIENT Cq

Figure 2.6: Histogram of the first and second cepstral coefficients

100

90

80

70

60

50

40

7o) AN T T N T T Y T S T N B T |
1 3 5 K 9 11 13 15 117 19
CEPSTRAL COEFFICIENTS

Figure 2.7: Cepstral variance and recognition rate

ol L ZJI_E.LI

18 2 The Recognition Algorithms

4
L
b 3
o~ -
“w
w
g€ 2t CHANNEL COEFFICIENTS
3
[-4
<= |
>
1 =
L CEPSTRAL COEFFICIENTS
0 1 1 1 | L Y Y —]
0 4 8 12 16

COEFFICIENT NO.

Figure 2.8: Channel and cepstral variances

Two factors affect the quantization noise, and consequently the distortion in the signal
representation: the first one is the codebook design that must take into account the
statistical distribution of the input vectors, while the second is the choice of the spectral
distance.

Whenever detailed statistical information about the distribution of input vectors is lacking
(as it happens to be in the speech signal case), the codebook can be generated by a training
procedure, which requires a speech data-base usually obtained from the pronunciation of
a generic text.

The LBG algorithm for codebook generation [35] is a generalization of the “K-means”
algorithm, and proceeds by iterative steps: first the centroid of the whole speech data-
base is computed; then a perturbation is applied to the centroid vector to obtain two
new vectors, which are used to code input vectors according to the minimum distance
principle. The two centroids are iteratively adjusted until a given minimum distortion
threshold is reached: at this stage an optimum codebook of two (1-bit) dimensions is
obtained. Each centroid is again perturbed, and a 4-level codebook is computed.

The procedure continues until a codebook of the desired dimensions is generated. Many
distortion measures can be chosen: from a mathematical point of view, they must be real
nonnegative functions. The mean square error measure is commonly chosen, defined as
the square of the Euclidean distance between two points in the cepstral vectors space.
Codebook sizes for speech applications range from 64 to 256 codewords; 128 is the size
selected for the present system.

Vector quantization distortion as a function of the number of cepstral coefficients for
codebooks of different sizes is shown in Figure 2.9.

Codebook generation is a rather complex and computationally expensive procedure;
therefore, a speaker-independent codebook is preferable, and statistically representative
material extracted from many speakers must be collected.

2.2 System Description 19

0.8

!

NORM. ERROR
e
F -9
I 4
JEJE%
Nmm

[¢] 4 8 12 16
NUMBER OF COEFFICIENTS

Figure 2.9: VQ distortion as a function of the number of cepstral coefficients

An efficiency measure for codebooks has been defined. Given the phonemes alphabet
P = (p1,p2,...,Pn,) and the codewords alphabet C = (¢c;,¢3,..-,¢n,), an “efficiency”
measure of a codebook is defined as

H(P) — H(P|C)

e= H(P) (2.2)

where H(P) = z,,”;l prob(p:) log prob(py) is the “a priori” entropy of the phonemes (with
respect to a given speech training data-base) and H(P|C) = — S <, prob(ck) H(P|ck)is
the entropy conditioned to the codebook and H(P|cx) = — va:’l prob(p;|cx) log prob(p;|ck)
is the entropy of the phoneme alphabet given a codeword.
Codebook efficiency is 0 if H(P|C) = H(P), that is if each codeword carries no informa-
tion about the phoneme, while it reaches the value of 1 when each codewords univocally
identifies the phoneme (actually these situations are never reached). Figure 2.10 plots the
efficiency of multi-speaker codebooks as a function of the number of cepstral coefficients
used for generating them.

Interestingly enough, a strong correlation can be observed between the efficiency (a)
and the recognition rate (b), so that the influence of a codebook on recognition perfor-
mance can be directly estimated from its efficiency score.

2.2.5 The Phonetic Representation

A vocabulary, either for recognition or training purposes, is generally available only in its
orthographic form, hence the way we use to write the words using the alphabet letters.
Less often the standard phonetic form is available; for instance one can have an on-line,
machine-readable dictionary with the possibility of accessing the pronunciation field, but
that does not solve the problem of verb inflections, proper nouns and special words that

20 2 The Recognition Algorithms

80 .8
% RECOGNITION
70~ ~ .7
EFFICIENCY
2
= 60 |- -~ .6 5
= =
z w
o Ll
g o
bend
2 w
x 50 - - .5 b
w .
40— - .4
10 K W S S S G N S | 3
19 17 15 13 n 9 T 5 3 1

PAR.

Figure 2.10: Efficiency of codebooks

do no appear in a standard dictionary (for instance jargon words). Hence it is of primary
importance for doing research on large vocabulary speech recognition to have an efficient
mean for handling the phonetic form of words given their orthographic description. Ad-
ditionally, the phonetic form must be translated into a recognition-unit form that is the
way a word is composed in terms of the choosen recognition units; one can simply use
the phones as units, hence the last translation is trivial, but if the researcher wants to
take into account more complex coarticulation phenomena and if he wants to experiment
with different ways of doing that, he needs to have available a tool for defining new units
starting from the phonetic description of words.

So we came to a basic representation of words lying over two levels of description.
The first is the standard phonemic form of words along with additional forms accounting
for inter-speaker variations due to different dialects and speaker habits. The second level
is a description of each phoneme by means of smaller units called Underlying Phonetic
Structure (UPS); they are mainly stationary segments (with a broader meaning of the
word “stationary”) and transitions. For instance the phoneme /k/ can be defined as a
sequence of silence (the stationary portion) and transition to the following phoneme. The
absence of the transition between the previous phoneme and silence means that in our
unit set that event is not relevant to the recognition of /k/. Further, a set of contextual
rules handles the final transcription of a word in terms of stationary and transitional
units.

This development system easily allows the definition of different unit sets as phonemes,
classical diphones and other.

Phonetic transcription

The first step for transforming words into recognition units is the transcription between
the orthographic form to the phonetic one. For languages like Italian the transcription

2.2 System Description 21

keyboard | IPA | keyboard | IPA
a a u u
b b v v
d d z z
e e - silence
f f 9 7
g g L A
i 1 M 1
i 17 N n
k k & J
1 l <t&> tf
m m <dZ> d¢
n n <dz> dz
o] 0 <ts> ts
P P i
R T (€
s s)
t t

Table 2.2: The Italian phonetic alphabet

is quite straightforward and a single program, possibly including an exception table,
can do the work without any manual interaction. Some problems arise with allophonic
variations of phones due to regional differences in pronunciation of words. For instance
in Italian, the letter s is sometimes pronounced as the phoneme /s/ and sometimes as
the phoneme /z/ depending on the speaker provenience. In those cases we introduced
multiple transcriptions of the same word; for example, the Italian word CASA (house)
has two phonetic transcriptions that are /kaza/ and /kasa/. Finally we chose an ASCII
phonetic alphabet where every phone is represented by a sequence from one to 5§ ASCII
characters that is reported in Table 2.2 along with the IPA (International Phonetic
Alphabet) symbols.

Also, a semicolon (;) following a consonant means that consonant is a geminate cluster,

like /t/ in the word OTTO (eight, /ot; 0/).

Underlying phonetic structure

As said before, the lower level of phonetic description consists in the so called Underlying
Phonetic Structure (UPS); the idea is to transcribe each phoneme into a sequence of
elements (Underlying Phonetic Elements or UPE) which, roughly speaking, show uniform
acoustic characteristics. Incidentally, the alphabet used to describe UPS is the same as
the phonetic one: while at the higher phonetic level each symbol represents a whole
phoneme, at the lower UPS level a symbol represents a phoneme portion. The plus (+)
symbol has the meaning of transition from the preceding or to the following phoneme;
so writing @ = +aaa-+ means that the phoneme a (on the left of the production) can be

22

2 The Recognition Algorithms

& =& w=+4uuut

(=+((z=12

)=+)) L =1 Li+

- = d: = b: d;+

9=n n; = n;

L=LL+ N; = N N;+

M=n f; =1

N = NN+ g =b; g+
R=+RRRR+|p;=-p+

a=+aa b; = b; b;+

b=>b b+ <dz>; = <dz>; <dz>;+
d =bd+ <ts>; = <ts>; <ts>;+
e=+tee §; = +8; 8,

f=1 k; = - k;+

g=Dbgt t; = - 4+

1=+4i1 <t&> = <t&> <t&>+
j=+ii4 I, = 41 1

k=-k+ m; = m;

1=+411 v, = +v; v; v;+

m=m <t&>; = <t&>; <t&>;+
n=n &, = &;

o=+40o0 <dZ>; = <dZ>; <dZ>;+
p=-pt R; = +R R R; R+
s§=+ss <dZ> = <dZ> <dZ>+
t=-t+ <dz> = <dz> <dz>+
u=+uu <ts> = <ts> <ts>+
v=+4vvv+t

Table 2.3: UPSs for Italian

translated into a left transition (+a), a stationary portion (a) and a right transition
(a+). In Table 2.3 a complete UPS for the Italian phonetic system is reported. Notice
that unvoiced plosives are translated into silence (-) pius transition to the following sound
while voiced plosives start with a sonorant bar (b).

The UPS of a certain phoneme is unique: a single sequence of UPE describes the
phoneme. This decision leads to some considerations on the entire unit system. All the
variations at the UPS level will be included in the same acoustic model. This has the effect
of eventually increasing the ambiguity of the model, so degrading the performance of the
recognition system. Therefore, if the variations in the phonetic structure are reasonably
strong, it is better to defer to the higher level the specialization of the model, that is, to
consider the variation as a different unit. Moreover, if some variations strictly depend on
the context, it is easier to handle them at the higher level. The translation of a word from
its phonetic form to its description in terms of recognition units starts with the translation
of each phoneme into the correspondent string of UPE. According to Table 2.3 , as an

2.2 System Description 23

example, the italian word APPARTIENE, in its basic phonetic form /ap;aRtj(ne/ can be
translated into:

taa-p++aa+RRRR+ - t+ +j j+ +((n +e e

The second step consist of detecting where the transitions are, or better, of merging two
consecutive transitional UPEs into one single transition unit and deleting the remaining
transitional UPEs. So, following the previous example, we obtain:

+aa-pjaa+RRRR+ -tj j((n+ee
a-p;aa RR -tjj((n e

It should be noticed that defining the UPS of the generic phoneme /x/ as x = +x x+
produces the classical diphone definition.

At this point the description of the word can be handled by a set of rules to take into
account the possible effects of a particular phonetic context that cannot be caught by the
general UPS.

Contextual rules

Contextual rules can be expressed in the following general form:
Uy Up---U, = Wy Wy---W,,

where U; and W; are generic recognition units: the sequence of units U;, i = 1,2,...,n
is translated into the sequence W; 7 = 1,2,...,n. In our system, rules are applied
sequentially in the given order to the whole word. Table 2.4 gives an example of a rule
set; the symbol # is a wildcard having the meaning of a generic phoneme. In that rule set
we want the phoneme /R/ to show a stationary portion only when it is not intervocalic;
the UPS of /R/ is made up of two consecutive stationary portions (+R R R R+), as in
Italian is impossible to utter an /R/ between two conmsonants and as according to the
rules each vowel cuts away an R we obtain the desired transcription. The rules dealing
with /v/ permits us to define only left transitions for the vowels and to have only right
transitions when the vowel is followed by /v/.

The rules 1-4 cause the two vowels o and) to be represented by the same symbol o as
well as the two vowels (and e; this is done because of the acoustic similarity of the sounds
and due to the fact that in Italian the use of the two o’s and of the two e’s depends on
speaker habits. Finally rule 17 transforms each geminate into the corresponding singleton
as we defer the distinction between them to higher levels of knowledge.

Extending the rules to the previous example it can be easily obtained that

a-p;aa RR -tj 3C(n e
a-pa a aRR -tjjeene

This formalism, developed in order to easily transcribe large lexicons into recognition units
given different unit definitions (including “phonemes” and “classical diphones”), was im-
plemented by a program (LDS Lexicon Development System) whose output is compatible
both with the HMM training procedure and with word recognition and hypothesization
programs.Such a program supports. lexicon creation, automatic transcription from or-
thographic to basic phonetic forms (including main variants), unit rules compilation,
transcription of words into the defined units system and relative statistics.

24 ' 2 The Recognition Algorithms

1| #)=+#o 12| oR =o00oR
2|)# =o# 13|/iR=1iiR
3| #(= #e 14 |uR=uuR
4| (# =e# 15| R Rj = Rj
5| RRa=Ra |16 | R Rw = Rw
6 RRe=Re |17 | #; = #
7/|RRi=Ri |18 |av=aavy
8 RRo=Ro |19 |ev=ecevyv
9| RRu=Ru |20 |iv=1iivv
10|laR=aaR {2l |uv=uuvyv
l1|leR=¢eeR |22 |ov=00vY

Table 2.4: Contextual Rules

2.3 Lexicon Structure

Knowledge representation is a central issue in the design of a large-vocabulary word rec-
ognizer. Several representations of words have been devised and experimented with that
rely on different models and codes for accessing the lexicon. All models, however, describe
words through a level of representation corresponding to phonemes. This assumption is
also implicit in models like LAFS [28], where words are described as sequences of diphone
spectral templates, and an acoustic code is the basis of the lexical access. According to
most of these models, words are recognized by means of a single-step matching strategy
that use all available acoustic-phonetic information. Several experiments [36, 22, 52, 32],
however, pointed out that the structure of words, even partially specified, is a powerful
source of constraints that is able to substantially reduce the lexicon search space. The re-
duction is obtained by grouping words sharing the same phonetic features into equivalence
classes. According to this approach, words are described by means of a limited number of
phonetic classes rather than by means of phonemes. Then, a detailed pattern matching
process is performed only against the subset of candidates obtained through a less ex-
pensive selection that rules out unlikely words. A preliminary experiment, not reported
here, was performed taking as its test bed a large vocabulary of Italian words [20], to
evaluate the relative focusing capability of different representation schemes, with the aim
of selecting a representation of words suitable to an effective lexical access. Several dif-
ferent classes of phonetic descriptions were considered (ranging from a very rough one to
others quite close to the phonemic form), to clarify the relationship between the accuracy
of the phonetic description and its selective capability. Obviously, detailed classifications
result in higher selective capabilities, but a capability must be related to the complexity
of achieving a detailed classification. A tradeoff consists in selecting phonetic features
simple enough to be reliable and robust, but carrying sufficient information to reduce the
words candidates to a reasonable size. This tradeoff must be found by taking also into
account the possibility of misclassifications of a feasible acoustic-phonetic front-end.

The most important conclusions emerging from the results of that experiment are
summarized in the following:

2.3 Lexicon Structure 25

¢ Even a very rough description of words, as given in terms of three classes only (Sono-
rant, Nonsonorant and Vowel) presents a powerful discriminating ability, confirming
the importance of the phonotactic shape of words.

o A detailed bottom-up classification of the Italian vowels is far less important for
word discrimination than a representation that allows the separation among Front,
Central and Back vowels.

o As far as consonants are concerned, the distinction between liquids and nasals is not
as relevant as the distinction between fricatives and plosives.

o A good tradeofl between accuracy and selection ability is obtained by describing
words in terms of six phonetic classes corresponding to plosives, fricatives, lig-
uids/nasals, front vowels, central vowels, and back vowels.

It is worth noting that this description alphabet is very close to the classification
schemes proposed for lexical access of the Italian language [30] as well as of other lan-
guages [22, 52, 47] on the basis of different analyses. Similar categories, in particular, have
been proposed on a linguistic basis in the pioneering work of Shipman and Zue [49]. Even
more interesting, however, is the consideration that similar broad phonetic classes are
produced as a result of automatic clustering of phonemes using several different statisti-
cal methods. Consider, for example, the results of Poritz’s experiment on a 5-state HMM
cited in [33], and classes obtained through different optimization criteria such as the the
maximization of the mutual information or transinformation [47]. Moreover, phonemes
can be clustered into classes on the basis of the distance between phoneme HMMs [51],
between cepstral parameters [40], or between more complex feature vectors [16, 39], con-
firming that the above mentioned classes can be reliably discriminated.

Lexical access is performed, therefore, through the code obtained by segmenting and
classifying an utterance in terms of six broad phonetic classes.

2.3.1 Phonetic Segmentation

Phonetic segmentation is performed by two modules that work in sequence: a frame-by-
frame phonetic classifier and a phonetic segmenter.

Phonetic classification

The frame-by-frame labeler estimates, by means of a hierarchical cubic polynomial clas-
sifier [1], the likelihood that a cepstral vector belongs to the phonetic classes described
by the following symbols:

k; = pl : silence or plosive consonant

k, = fr : fricative consonant

k3 = In : liquid or nasal consonant

ky = fv : front vowel

ks = cv : central vowel

kg = bv : back vowel

This set of labels will be referred to in the following as “classification alphabet”. It
has been chosen as a result of a preliminary study on the discrimination of words in a

26 2 The Recognition Algorithms

large Italian lexicon by partial descriptions [30, 2]. A phonetic tree for the Italian and
German language is represented in Figure 2.11a, in Figure 2.11b the similarity among
phonemes is represented by a dendogram, and the separability into different classes by
using cepstral features is illustrated in Figure 2.12.

These phonetic features are simple enough to be extracted reliably, but, at the same
time, they carry sufficient information to reduce the set of words that are described by
the same sequence of symbols to a reasonable size. For each 10 msec speech frame, 18 Mel
based cepstral parameters (co, ¢y, . ., c17) are computed. The components of the primary
pattern vector x used for classification are only the coefficients ¢; to ¢ and the total
energy of the frame. The ideal classification of a given frame can be described by a target
vector:

= [21,22,...,26] (23)
where

z; = 1 if the frame belongs to the i-th class
2;=0 ifj#1

The classifier gives an estimation d of target vector z
d = [dy,ds,...,ds (2.4)
by using a cubic function of vector x :
d = K(x) (2.5)
The estimation is optimized for minimum mean-squared error S, defined as:
S=E[(z-d)(z - d)] (2.6)

where T is the transpose operator, and E [.] is the expected value. Let y be the secondary
pattern vector obtained by appending to the vector x the quadratic and cubic combi-
nations of the parameters. The relation (2.5) can be expressed by the following linear
matrix equation:

d=ATy (2.7)
and the minimization of (2.6) leads to the equation [19] :
E [yy"| A = E [y2"] (2.8)

The training procedure for the classifier estimates matrices £ [ny] and E [sz] by using
a data base of labeled speech, then it computes matrix A from equation (2.8) by means of
a recursive procedure described in [53] and [25]. The main characteristic of this procedure
is that the components of vector y are ordered on the basis of their significance with
respect to the discrimination of the classes. The number of components of y used for the
estimation is increased by one at each iteration which, therefore, produces a temporary
result that takes into account the most important components only. The most correlated
components, that are redundant for discrimination, are eliminated. On the average, a

2.3 Lexicon Structure

VOWELS SDNORANTS NONSONORANTS
~ 7/ | ~
FRONT CENTRAL ‘BACK LIQUIDS NASALS PLOSIVES FRICATIVES AFFRICATIVES
T L) v 1§ 1 T 1]
i e B o u Ir T A m n p—l /
YOICED UNVOICED
vf vm vb M T ¥ T
VDICED unvoxcsn uz dg ts ts
pl b d g p t k 1
VOICED UNVQICED
[v 2z f s 7
a
(a) fr

0.50 4

0.40

0.30

0.20 -

0.104

1

£

0 Hytaq—p it L)
d L N f 2z dz t& g m v o

(b) b g i n e ts d2 & s R M a u

ITALIAN SPEECH MATERIAL
(4 SPEAKERS, 723 WORDS, 26 PHONETIC LABELS)

Figure 2.11: Phonetic tree and dendogram

2 The Recognition Algorithms

28

VOWELS

CEPSTRAL COEFF. C4

8

3.60

1.20
-1.20

27 *44300 TVY¥LSdID

-3.60

-15

-8

€2 *44300 TVH1SdID

18

CEPSTRAL COEFF. C4

Figure 2.12: Scatter plot of C; vs C; for vowels (top) and fricatives (bottom)

2.3 Lexicon Structure 29

test | n. of frames | pl fr In fv | cv | bv | rejection | error rate
pl 173853 86.5| 47 | 3.8 | 16 | 1.7 | 1.7 0.0 13.5

fr 72875 3.2 183 81|26 |04 | 14 0.0 15.7
In 88473 1.2 119 {834 76 { 29 | 3.0 0.1 16.6
fv 140065 06 | 20 | 64 {899 | 0.8 | 0.2 0.1 10.1
cv 94987 0.8 | 1.0 | 33 | 1.7 [91.1| 2.1 0.0 8.9

bv 121844 21 | 44 102] 04 | 1.7 | 811 0.1 18.9

Table 2.5: Class-to-class confusion matrix, best first decision

test | n. of frames | pl fr In fv cv | bv | rejection | error rate
pl 173853 9491 14 | 1.7 | 0.8 | 0.7 | 04 0.1 5.1
fr 72875 1.3 1902|565 | 1.5 | 0.2 | 1.3 0.0 9.8
In 88473 0509 |934| 28 | 1.3 | 11 0.0 6.6
tv 140065 04 | 10 | 1.7 |965] 0.3 | 0.1 0.0 3.5
cv 94987 04 | 05 | 16| 08 {957 0.9 0.1 4.3
bv 121844 1.0 | 25 | 56 | 0.3 | 0.5 |90.0 0.1 10.0

Table 2.6: Class-to-class confusion matrix, first two best decisions

reduction of the number of components, from 285 (10 linear, 55 quadratic, and 220 cubic)
to 90, is observed for the secondary pattern vector.

The classifier assigns to each input frame the class k; corresponding to the highest
value component d; of the estimation vector d. Uncertainty and reject regions are also
considered in the d space. If the estimated vector d falls in the neighborhoods of the
nearest target vector, a single label is assigned to the analyzed frame, if its distance
from two target vectors is within a given threshold, two labels are assigned, otherwise no
decision is drawn.

A set of 1105 isolated Italian words (TRA dictionary) pronounced by 5 male and
2 female speakers was collected for training the frame-by-frame classifier. These 7735
utterances were automatically labeled in terms of phonetic units as will be described in
Sect. 2.5, where training of HMMs is illustrated, and used for estimating the parameters
of 7 speaker-dependent classifiers.
Another set of 1011 words, belonging to the dictionary of the geographic data base query
application (GEQ), was recorded by the same speakers and all the tests were performed
on this set of 7077 utterances. The classifier performance, averaged among the speakers,
given in terms of percentage of frames assigned to the six phonetic classes, is summarized
in the class-to-class confusion matrix of Table 2.5 and 2.6. Table 2.5 shows the results
considering the best first decision only, while Table 2.6 considers also the possible alter-
native decision. In 63% of the cases a single label is assigned to a frame.

30 2 The Recognition Algorithms

Phonetic segmentation

The phonetic segmenter module has as input the sequence of frame-by-frame classification
labels and the related component of the estimated target vector, thus for each frame n:

(kIu’dIn)kJn7dJu) n:l,...N (29)

where k; is one out of the six coarse phonetic labels and d; is the i-th component of the
estimation vector d. For those frame where only one label is generated, I, and J, are
equal. The output of the phonetic segmenter is the so-called micro-segmentation, namely
a structure constituted by a sequence of elements (the micro-segments) defined as:

M(t) = (b, ¢, 8%, a,88,a8,0); t=1,...,T (2.10)

where b* and e’ are the beginning and ending frames of the micro-segment, st and s are
its first and second phonetic labels, a! and af are its classification reliabilities and p* is a
number related to the minimum segment energy. Of course, s} and a} are equal whenever
a single hypothesis is produced.

In the following the function of the different modules constituting the phonetic seg-
menter will be detailed.

¢ PLOSIVE module
This module give the label plosive to all frames that have 1 (silence) as energy
quantization symbol. Additionally, it forces unconditionally to plosive the first and
the last 3 frames of the utterance that could be inaccurate.

o REJECT module

Since the frame-by-frame classifier can reject the classification of one or more frames,
this module links unlabeled frames to labeled ones. Its rule is to give the same label
as on the first left-hand frame to the left half of the unlabeled segment and the same
label as on the first right-hand frame to the right half.

o MAJORITY VOTING FILTERS module

The majority voting module processes the sequences of phonetic labels

(Z’") n=1,...N (2.11)
JIn

assigned to each frame n as the first and second decision respectively, and obtains a
smoothed representation

(k’f't) n=1,...N (2.12)

A preliminary spot-like smoothing is performed by applying the following filters:

() = (%) (213)

aba = aaa (2.14)

aaabaaa —> aaacaaa (2.15)

2.3 Lexicon Structure 31

2 * 52 9¢9

€)

b)

 §T 27

s P

Figure 2.13: a) Frame-by-frame classification before MAJORITY VOTING FILTERS, b)
energy, c) Micro-segments after MICROSEGMENTATION for the Italian word /fiume/

where @ and b are specific frame-by-frame labels, * is a generic label and the two
rows in the formula refer to the first and second decisions respectively. Then a ma-
jority voting filter (MVF) is applied to each one of the symbol strings separately.
The MVF substitutes to the central symbol of the moving window the most frequent
symbol within the window. Window length is an important parameter that affects
the performance of the lexical access module. As will be shown in Sect. 2.4.2, a
5-frame window length gives the minimum number of word candidates as well as the
minimum computational complexity.

¢ MICROSEGMENTATION module

This module defines the micro-segments as those portions of the utterance in which
both the first and the second label remain unchanged. Figure 2.13 shows an example
of frame-by-frame classification before the application of the majority voting filters
and micro-segmentation after the application of module MICROSEGMENTATION
for the Italian word fiume (/fjume/). The black segments represent first decision
symbols, while gray ones represent alternative decision symbol frames; the phonetic
class symbol corresponding to a segment can be read on the left hand side of the
figure.

¢ ENDPOINT module
This module detects the longest path in the micro-segmentation, from the beginning
of the utterance, crossing only plosive segments. The same operation is done back-

32

2 The Recognition Algorithms

Figure 2.14: Example of how the STEP module operates

ward starting from the end of the utterance. The segments corresponding to the two
paths are forced to plosive segments. This operation eliminates most of the errors
due to the noise that sometimes is present at the beginning/ending of an utterance.

ELIM module

This module deletes from the micro-segmentation all one-frame segments.

STEP module

This modules eliminates the micro-segments deriving from the partial overlap of
two adjacent hypotheses like the example reported in Figure 2.14. In that example
the micro-segment between lines A and B is due to misalignment between the best
labels and the second-best ones. There is practically no change of information in
eliminating the micro-segment putting a boundary C between A and B.

RELIABILITY module
This module computes the reliabilities aj and af for each micro-segment M(t) ac-
cording to the following formula:

al = Z 7i(s3) (2.16)

where

HEYE { dy, ik = s (2.17)

0 otherwise.

2.4 Word Representation 33

2.4 Word Representation

Each word of the lexicon can be automatically translated, by means of a set of context-
sensitive rules, from its orthographic form into a number of possible phonemic transcrip-
tions taking into account the main speaker variations. From the phonemic forms, a set of
phonetic representations of the words with different degrees of detail can be derived. The
choice of a representation alphabet depends on a tradeoff between the speed-up of the
lexical search due to the introduction of equivalent phonetic classes and the confusability
given by a less detailed phonetic knowledge. For example, phonemes /s/ and /v/ are both
fricatives, but strong fricatives like /s/ are very likely to be correctly classified as fricative
consonants, while weak fricatives like /v/ are quite often classified as liquid/nasals. It is
possible to better account for these classification errors by representing words in terms of
more detailed classes, but this advantage must be traded with an increase of the lexical
search space. A compromise has been established by evaluating the resulis of a set of
experiments, described in Sect. 2.4.2, using three representation alphabets:

e A;, described by the following phonetic classes:

hy = Spl : plosive consonant

h, = Lpl : silence or geminate plosive consonant
hs = Wir : weak fricative consonant

hy = Sft : strong fricative consonant

hs = WiIn : weak liquid or nasal consonant
he = Sln : strong liquid or nasal consonant
h =1 : unstressed front vowel

hg = 11 . stressed front vowel

hy = A : unstressed central vowel

hio = AA : stressed central vowel

h, = U : unstressed back vowel

hys = UU : stressed back vowel

where each symbol of the classification alphabet splits into two different representa-
tion labels accounting for the difference between stressed and unstressed vowels and
between strong and weak consonants,

e A, where the distinction between stressed and unstressed vowels has been elimi-
nated.

e Aj, the same alphabet used for classification.

As an example, the Italian word FIUME (river), whose standard phonemic transcription is
/fjume/, is represented by the following strings of symbols, depending on the description
alphabet:

A : Wir I UU Win 1
A, : Wi 1 U Win 1
A; . fr fv . bv In fv

The representation of a word, in terms of the symbols of a description alphabet, will be
referred to as:

W =w'w®. .. w™ (2.18)

34 2 The Recognition Algorithms

INS INS INS INS INS

Figure 2.15: Error model of the word /fjume/

where M is the length of the representation.

2.4.1 Three-Dimensional DP Matching

A word representation which takes into account misclassifications can be modeled by a
graph such as the one shown in Figure 2.15 where the symbols of alphabet A; are used and
each link is associated with a cost C(op(h;, k;)) corresponding to the alignment operations
op(h;, k;) below:

sub(h;, k;) : substitution of test symbol k; for reference symbol h;
ins(hi, k;) : insertion of test symbol k; after reference symbol h;

del(h;) : deletion of reference symbol A;
The problem of finding the best matching of a reference word model against a test
micro-segmentation can be stated as follows:

e Select one path in word description and one in micro-segmentation; each path corre-
sponds to a string of symbols belonging to the representation and to the classification
alphabet respectively.

e Compute-the best alignment cost between these strings by using the costs defined in
Sect. 2.4.1.

o Repeat this procedure for all path pairs.
e Select the minimum cost path pair.

Two optimizations must be performed: the innermost computes the best alignment cost
between two strings, the outermost finds out the minimum cost path pair. These opti-
mizations are carried out in a single pass by a Dynamic Programming procedure (three-
dimensional DP or 3DP) that develops warping paths in the three-dimensional space
illustrated in Figure 2.16. The three dimensions represent the nodes of the reference word
model (dimension R), the sequence of the test micro-segments (dimension T), and the
levels of the micro-segmentation lattice (dimension L). A local cost function G(r,t,1) is
defined in the RTL space, where 7 is a node of the word model associated with a symbol
of the representation alphabet, t is the index of a micro-segment and [, the lattice level,
assumes the values 1 or 2 referring to the best and to the second-best segmentation labels
respectively. The cost function G(r,¢,1) can be computed, for every r, t, and [, by the

2.4 Word Representation 35

LA T

n
/ fv

-
<
-+
<

// bv /)/

fr // B §
) R
Wfr 1 i} Win 1 R
Figure 2.16: Three dimensional space
DP equations:
G(r — 1,t — 1, k) + C(sub(w, s})) (2.19)
G(r,t,1) = ’fr_ulx; G(r,t —1,k)+ IC(w", s}) (2.20)
G(r — 1,t,k) + C(del(uw")) (2.21)
where:
Clins(wr,sl)) if of# s
IC(w,s}) =

CC(sub(w",s})) otherwise (2.22)

where [and j assume the value 2 only if the ¢{-th micro-segment has two classification
symbols. Equations (2.19), (2.20), (2.21) account for symbol substitution, insertion, and
deletion respectively. It is worth noting that this structure can lead to “false insertion”
events whenever adjacent micro-segments have the same phonetic symbol. Equation 2.22
solves this case by considering a micro-segment as the continuation of the preceding one
if they have the same label, CC being the “continuation cost”.

For each value of » and ¢, 10 equations must be evaluated in the above formulation,
(equation (2.21) does not depend on I). A suboptimal solution, reducing the number of
equations to 4 is used instead, that, given the statistical characteristics of the segmentation
process, does not substantially affect the performance of the system. In fact, the system
of equations (2.19), (2.20), (2.21) carries on all locally optimal warping paths. For any
given t, two optimal alignment paths exist because both the first and the alternative
phonetic label of the t-th micro-segment are considered. It must be noticed, however,

36 2 The Recognition Algorithms

that if the ¢-th micro-segment has one label only, optimal partial paths associated with
point (r,t — 1,1) and with point (r,¢ — 1,2) in the RTL space are forced to converge, in
the next step of DP, to the same point (r,¢,1) and the DP algorithm keeps the best one
only. As a single label is associated, on the average, with 65% of the micro-segments, even
if the best path selection is made at each step t, the results of the matching procedure
should not be appreciably affected. In addition, as far as insertion is concerned, only the
first label of an inserted micro-segment can be considered, if statistics referring to the
insertion costs have been obtained accordingly in the training phase. These hypotheses
have been confirmed by the experimental results given in Sect. 2.4.2. The DP equations,
thus, can be modified as follows:

H(r — 1,t — 1) + C(sub(w", s})) (2.23)
H(rt) = min H(r,t- 1)+ IC(w",s!) (2.24)
H(r — 1,t) + C(del(w")) (2.25)

As the decision about the lattice level is made at each step, the cost function H depends
only on the variables r and ¢.
Matching costs
A simple function for the local matching cost is:
Ci(op(hi, k;)) = —Log [Prob(op(h;, k;))] (2.26)
hence:
C1(sub(hi, k;))

Cl(ins(h,-, kJ))
C1(del(h;))

— Log [Prob(substitution of k; for h;)] (2.27)
—Log [Prob(insertion of k; after h;)]
— Log [Prob(deletion of h;)]

I

These costs are estimated in the training phase by using the same phonetically bal-
anced vocabulary (TRA) used for training the phonetic classifier. Every uttered word is
aligned to its phonetic description by means of the 3DP procedure. If a word has more
than one phonetic description, the model attaining the minimum alignment cost is con-
sidered. A backtracking procedure collects, for each word, the number of substitutions,
deletions, and insertions of phonetic symbols:

Nsub(hi, k;) = Number of substitutions of k; for h;
Nins(h;, k;) Number of insertions of k; after h;
Ndel(h;) = Number of deletions of h;

i

When all vocabulary has been processed, the alignment costs can be estimated as follows:

Ntot(h;) = Z [Nsub(h;, k;) + Nins(h;, k;)] + Ndel(h;)) (2.28)

2

Ci(sublhi, k;) = —Log(Nsub(hi, k;)/Ntot(hs))
Ci(ins(h;, k;)) = —Log(Nins(h;,k;)/Ntot(h;))
Ci(del(h;)) = —Log(Ndel(h;)/Ntot(h;))

2.4 Word Representation 37

i]ieaker S%x Deletions | Incorrect ?ubstitutions Insertions
FR i 25 279 2121
PD m 18 399 2384
LF m 38 257 2103
GM m 44 320 1716
RP m 34 311 2220
GP m 15 174 2236

Table 2.7: Number of segmentation errors

These costs are re-estimated by iterating the training procedure until they do not change
appreciably. Two or three iterations are generally sufficient for obtaining a stable solution.
The ”continuation cost” CC is null using this metric.

The initial costs are set as:

=0 if h; belongs to class k;
Ci(sub(h;, k;))
=2 otherwise
Ci(ins(h;, k;)) =1
Ci(del(h;)) =1

This initial setting corresponds to performing a 3DP matching using a modified Leven-
shtein distance.

The error rates of the phonetic segmentation, computed during the estimation of the
alignment costs, in terms of the number of deleted, substituted and inserted segments,
are shown in Table 2.7 for 7 speakers.

The transcription in terms of 6 phonetic classes of the 1105 words of the training dic-
tionary (TRA) generates a total of 7115 phonetic segments, i.e. 6.4 distinct phonetic
segments per word, on the average. Segmentation produces, instead, 14.4 segments per
word on the average. It is worth noting, however, that every segment in excess is not
a spurious insertion since many of them are continuation segments as defined in equa-
tion (2.22) of Sect. 2.4.1. Table 2.7 shows that deletions and substitutions of segments are
not very frequent, while more than 2 insertions per word can be expected. The highest
contribution to the insertions is due to fricative and liquid/nasal consonants as shown in
Table 2.8, where the percentage of substituted, deleted and inserted segments, averaged
over all speakers, is detailed for each class.

An example of the 3DP matching is offered in Figure 2.17 where the best alignment
path is outlined.

Duration of micro-segments

Metric Cy, defined in (2.26), does not take into account the micro-segmentation timing
structure, a very important cue for word hypothesization. A straightforward way to
include the duration of micro-segments.in the matching cost is the following:

Ca(hi, k;, op(hi, k;)|len(M;)) = — Log(Prob(opl(h;, k;)) * len(M;) (2.29)

38 2 The Recognition Algorithms

Class | Deletions | Substitutions | Insertions
7 0.47 0.23 0.h4
fr 0.23 0.36 5.20
In 0.11 0.11 7.10
fv 0.17 0.34 1.74
cv 0.06 0.00 1.41
by 0.08 0.12 1.32
Total 1.12 1.16 17.31

Table 2.8: Percentage of deleted, substituted, and inserted segments for each phonetic
class

(REFERENCE)
E M I L | AN E
Lpl | Win | Win | @aaWn i Lpl
d d d d d d d d d d d
1 (8)d d d d d d d d s
t 1 (s)d d d d s d
i i1 (s) d s d d
. i i d d s d
i s d s d d
s i i d d s d
(O (S) d d
t I T (1) d
(I T i
L T T i
(T T T T N TR T |
[T TR T SR TR

S: SUBSTITUTION D: DELETION I: INSERTION (THE BEST PATHIS
MARKED BY CAPITAL LETTERS)

Figure 2.17: 3DP matching: best alignment path

TR

2.4 Word Representation 39

where opl(h;, k;) is the basic alignment operation of one test frame, labeled k;, against the
reference symbol h;, and len(M;) is either the duration of micro-segment M;, if opl(h;, k;)
is a substitution or an insertion operation, or it is the average duration of the h; phonetic
class corresponding to a deletion operation.

Reliability of micro-segments

Let the reliability rel(k;, M;) of the k; label of micro-segment M; lie in the interval
[1,22]; a local alignment cost can be defined in term of the conditional probability of
the segment:

C R(op(hi, k;), rel(k;j, M;),z1,22) = — Log(Prob(op(h;, k;)|z1 < rel(k;, M;) < z2))
(2.30)
By applying the Bayes relation, equation (2.30) can be rewritten as:

C R(op(hi, k;), rel(k;, M;),z1,22) = (2.31)

Prob(op(h;, k;)) * Prob(zl < rel(k;, M;) < z2|op(h;, k;))
Prob(zl < rel(k;, M;) < z2)

—Log

Factor Prob(zl < rel(k;, M;) < z2) can be neglected because it neither depends on the
reference symbol h; nor on the op(h;, k;). Hence, assuming the statistical independence of
the alignment operations and of the micro-segment reliability, a matching cost function
can be defined as the sum of two contributions, an alignment cost A and a reliability cost
R as follows:

CR'(op(hi, k;), rel(k;, M;),z1,22) =
A(op(hi, k;)) +
R(:l!l < rel(kj,M,-) < $2|Op(h,’,kj)) (232)
where
A(op(hi, k;)) = —Log(Prob(op(hi, k;)) (2.33)

and
R(op(hi, k;), rel(k;, M;),z1,22) = — Log(Prob(z1 < rel(k;, M;) < z2|op(hi, k;)) (2.34)
thus, by taking into account the duration of micro-segments:

CR”(Op(h,',kj),TEl(kj,Mj),Il,z2) = (235)
Cz(h.‘, k.i7 op(hh kJ)) +
R(z1 < rel(k;, M;) < z2|op(h, k;))

The reliability cost R can be estimated in the training phase by collecting statistics
for each operation op(h;,k;) into an histogram. The estimation can be simplified by
considering that a micro-segment has associated with it one or two phonetic labels (s,
and s,) ordered according to their reliability. The histogram, thus, can be reduced to
only three cells accounting for the following events:

40 2 The Recognition Algorithms

e 7, : the drawn symbol k; is s3; and s, = nil
e 75 : the drawn symbol k; is s, and s, # nil
o 73 : the drawn symbol &; is s,
As a second simplification, the following classes of events are clustered:
o ei(k;) : op(hi, k;) = sub(hi, k;) V h; € k; (correct matching)
o ey(k;) : op(h;,;) = sub(hi,k;) V h; D k; (incorrect substitution)
e e3(k;) : op(hi, k;) = ins(hs, k;) V h; (insertion)
o ey(k;) : op(hi, k;) = del(h;) V h; (deletion)

Hence, given p and g, the reliability cost can be computed as:
R(rp , eq(k;)) = —Log(Prob(r, | e4(k;)) ; p=1,...,3; ¢=1,...,4 (2.36)
and the local cost as:

Ca(hi, kj, 0p(hi, k;)) = Ca(hi, ki, 0p(hi, k;)) + R(rp | eq(k;)) (2.37)

2.4.2 Lexical Access

Even if the number of phonetic micro-segments in a word is, on the average, less than
the number of centisecond frames by about an order of magnitude, the complexity of
matching a micro-segmentation against every vocabulary word is impractical when the
lexicon size is of the order of thousands. A representation that reduces storage costs and
leads to an efficient lexical access is obtained by merging the sequences of phonetic classes
that describe the words in a tree in which the initial common subsequences are shared
(50, 14, 30, 47]. If the nodes of the lexical tree represent phonetic classes, all words which
share the same coarse phonetic description can be associated with the same node (the
node representing the last phoneme) as they become a set of phonetically indistinguishable
lexical items. An example of a simple 12-word lexical tree is shown in Figure 2.18, where
all leaves and some (terminal) nodes are associated with the set of lexical items having
the same phonetic structure. A tree is best suited to the lexical access task, rather than
a more compact graph structure, because the former allows the N best word candidates
to be easily obtained. The 3DP algorithm, in fact, can evaluate the alignment costs of
all vocabulary words in parallel. This operation would be more complex and expensive if
performed on a graph.

Given the micro-segmentation of an uttered word belonging to a lexicon represented
by a tree TN, lexical access is performed by detecting the sequences of phonetic nodes
TN(i), and hence the corresponding words, whose costs computed by means of the 3DP
lie within a fixed range of the best one.

Each node TN(i) of the lexical tree is characterized by the following (static) informa-
tion:

PHON_ID : phonetic identifier

FIRST.SON : pointer to its first son

BROTHERS : pointer to the list of its brothers
LEQW : list of phonetically equivalent words

2.4 Word Representation 41

GIULIE

SILENCE

Figure 2.18: A lexical tree

where the phonetic identifier PHON_ID is a symbol of the representation alphabet, the
FIRST.SON pointer identifies the first son of node TN(i), while BROTHERS is the pointer
to the list of the brothers of TN(i), i.e. the nodes sharing the same father, and LEQW is
the (possible empty) list of words that share the same path from the root node TN(0) to
TN(i).

As lexical access is based on the expansion of the TN tree, a set of two-element arrays
is added to the static information of the nodes in order to save the values needed for
carrying on the 3DP procedure:

COST : optimal alignment cost array
DECS : decision symbol array
LINK : mnext active node pointer array

Foreacht =1,...,T, the COST array stores the cost values of the current best alignment
paths ending in node TN(i) after micro-segments M(t) and M(t + 1) have been observed.
The DECS array stores the labels of micro-segments M(t) and M(¢t+1) that are drawn by
the optimization process; this information is used for dealing with “false insertion” events.
Links to nodes that must be expanded are held into the LINK array. The expansion of
the TN tree is controlled by a beam search stirategy, working on two lists of active nodes,
according to the basic steps described in Pascal-like language in Table 2.9.

When the last micro-segment M(T) is observed, the active nodes in list L(current) are
processed only for possible extension of the best paths through deletions. The set of

42 2 The Recognition Algorithms

Initialize variables current and nezt (referring to the list of active nodes to be expanded
in the current and next cycle of the search) to 0 and 1 respectively;
Initialize t, and COST(0) of the root node TN(0) to 0; The COST elements of all other

nodes are set to co;
Create empty lists L(current) and L(nezt), append TN(0) to L(current).
repeat

Reset list L(next);
repeat
Examine TN(i), next node in L(current).

If TN(i).COST(current) exceeds the cost of the optimal path up to the micro-
segment M(t-1) of a fixed threshold, then

the best path associated with node TN(i) is extended no further, according
to the beam search strategy.

Else
If the insertion cost obtained by using equation (2.24) of the 3DP procedure
is less then TN(i). COST(neat), the cost of the current best path up to micro-
segment M(t+1) and node TN(i), then

Set TN(i).COST(nezt) to the new value and append node TN(i) to list
L(nezt) using TN(i).LINK(nezt) unless it is already there.
For every son TN(j) of TN(i) do

If the deletion cost obtained by using equation (2.25) of the 3DP procedure
is less then TN(j).COST(current), the cost of the current best path up to
micro-segment M(t) and node TN(j), then

Set TN(j).COST(current) to the new value and add node TN(j) just after
node TN(i) into list L(current).

If the substitution cost obtained by using equation (2.23) of the 3DP
procedure is less then TN(j).COST(current), the cost of the current best
path up to micro-segment M(t) and node TN(j), then

Set TN(j).COST(current) to the new value and append node TN(j) to list
L(nexzt).
Reset TN(i).COST(current) to oo and TN(i).LINK(current) to nil.
until every node in L(current) has been processed,;
swap(C,S);

Set t to t+1;
until micro-segment M(T-1) has been observed.

Table 2.9: Lexical access algorithm

2.4 Word Representation 43

100 — = 100

95 |- 95 |-

20 90 -

85 - 85

80 - 80~

AVERAGE INCLUSION RATE (%)
AVERAGE INCLUSION RATE (%)
v

a) b)

75 | S W [WO U T N SR NN VR S 1 15 1 PR 1 s 1 1
20 40 60 80 100 120 140] 10 20 30 40 50 60

AVERAGE NUMBER OF CANDIDATE WORDS AVERAGE NUMBER OF DP OPERATIONS (x1000)

Figure 2.19: DP matching procedure comparison: a) Average inclusion rate vs. aver-
age number of candidate words, b) Average inclusion rate vs. average number of DP
operations

candidate words can be, then, easily retrieved by means of the LEQW of nodes contained
in the list L(current). The average dimension of this set is controlled by the value of the
beam search threshold.

Experimental results

A first set of experiments was devoted to the assessment of the 3DP method. The complete
set of 1011 words of the GEO vocabulary pronounced by a male speaker was used as test.
Figure 2.19a shows the rate of inclusion of the correct word in the candidate list versus
the average number of candidate words for three different matching procedures, namely
optimal 3DP (curve A), sub-optimal 3DP (curve B), and DP matching of the best first
segmentation hypotheses only (curve C). Word models were represented by means of the
symbols of alphabet A;, and the C; metric was used for the evaluation of the costs. The
curves were obtained as a function of the beam search threshold.
The 3DP procedure performs considerably better than classical DP: fewer candidate words
and higher inclusion rates are obtained. The optimal and the sub-optimal procedure give
very close results but the complexity of the sub-optimal procedure is comparable with
the complexity of the classical DP (see Figure 2.19b), in fact, for each reference node and
for each micro-segment, four equations rather than three must be evaluated. Sub-optimal
3DP has been, therefore, used in all remaining experiments.

A second set of experiments was carried out for. selecting the best representation
alphabet. The same test was performed by representing the GEO vocabulary words
through the symbols of the alphabets 4;, A, and Aj introduced in Sect. 2.3.1. Table 2.10
shows the number of nodes (N), the number of leaves (L), the terminal nodes (T), and
the average branching factor of the obtained lexical trees.

44 2 The Recognition Algorithms
Alphabet | N, of nodes | N. of leaves [N. of terminal nodes | Branching factor
A 2656 801 894 1.43T
A, 2178 104 875 1.477
Aa 1739 569 749 1.485

Table 2.10: Number of nodes, leaves, terminal nodes, and branching factor of the 1011
word GEO lexical trees using three representation alphabets

100 100

98 -~ 98|
g = 7L

['T)
w 96 S 96
-4 (-4
< = - A3 A2 A1
Z 94 = L
] g
w0 =1
=] =1 -
p (%]
2 92 Z 92|
-
w -

w Q
2 g0 & S0
& s
> a) = i b
< 8 88)

86 1 1 1 1 1 1 1 1 1 1 86 1 1) 1 1 1 1 | 1

20 40 60 80 100 120 1000 2000 3000 4006 5000 6000

AVERAGE NUMBER OF CANDIDATE WORDS AVERAGE NUMBER OF DYNAMIC NODES
Figure 2.20: Representation alphabets comparison: a) Average inclusion rate vs. average
number of candidate words, b) Average inclusion rate vs. average number of expanded
nodes

The curves of Figure 2.20a, that present the inclusion rate versus the average num-
ber of candidates obtained by varying the beam search threshold, suggest that a more
detailed specification of the lexical tree, such as that offered by alphabets A; and A,
does not substantially reduce the candidate average size at inclusion rates greater than
99%. Better performance of alphabets A; and A, with respect to alphabet Aj, for more
constraining beam search thresholds, is not surprising because more information is con-
veyed by their alignment cost matrices. However, due to the scarce redundancy of the
micro-segmentation code, large values of the beam search threshold must be used for ob-
taining acceptable high performance. Thus, coarseness of matching renders the accuracy
of the model unhelpful. Furthermore, the computational load increases when more de-
tailed representation alphabets are used, as shown in Figure 2.20b, where the inclusion
rate is plotted versus the average number of nodes expanded during the search. Aj has
been, therefore, used as the representation alphabet in all successive experiments.

The third experiment has been carried out to assess system performance as a function
of the above described metrics Oy, C» and Cj. Its results are summarized in Figure 2.21a

2.4 Word Representation 45

100 100
c3

® 9 £ 99f

w
w
5T = T
= -4
z %8 g 98- cz
@ -) n c1
- i
wd
2] g
E 97 |~ - 97 j

w
w I
g -
g o g
E a) *r b)

95 1 1] 1 | 1 1 1 95 ! | 1 ! 1 1
30 40 50 60 70 80 90 100 110 120 1000 2000 3000 4000
AVERAGE NUMBER OF CANDIDATE WORDS AVERAGE NUMBER OF DYNAMIC NODES

Figure 2.21: Comparison of different metrics: a) Average inclusion rate vs. average
number of candidate words, b) Average inclusion rate vs. average number of expanded
nodes

and Figure 2.21b.

Timing information (metric C,) gives substantial improvements, and further improve-
ments are obtained by using the reliability of the phonetic labels (metric C3).

The next set of experiments was performed for seven speakers, in the best conditions
suggested by the previous experiments: sub-optimal 3DP, A; representation alphabet and
Cs metric. Figure 2.22a shows, for various beam search thresholds, the inclusion rates
and candidate list size for all speakers, while Figure 2.22b presents the averaged results.
The difference of the average inclusion rate among speakers is within 1% for the same
beam search threshold value. Larger values of the threshold do not affect appreciably
the accuracy of the hypotheses, while they considerably increase the average number of
candidate words, and the computational load. On the average, only about 10% of the
items in the lexicon must be verified, and substantial improvement can be obtained by
taking into account the heuristics introduced in Section 2.4.2. Figure 2.23 shows the
average number of word candidates as a function of the number of syllables in a word;
superimposed, as a bar graph, is the distribution of words in the GEO vocabulary as a
function of their number of syllables. Short words generate a large number of candidates
because the shorter the uttered word is, the easier it is to find, in a large vocabulary,
similar or slightly different words in terms of a phonetic description into coarse classes.
Errors are uniformly distributed among words composed of 2, 3 and 4 syllables. No errors
were observed for monosyllabic or very long words. Monosyllabic words are generally
well segmented and classified, when pronounced in isolation, because they are pronounced
slowly with respect to the syllables of polysyllabic words, as can be observed in Figure 2.24
where the average syllable duration is shown as a function of the number of syllables in a
word.

Figure 2.25a shows the inclusion rate as a function of the position of the correct word

46 2 The Recognition Algorithms
100 100

® r w -

® r @ K

w C

£ F = 99.5

-4 ~ =

= 99 g L

=] 2 L

Lo

a =}

=2 = -

a N —

e RP -

- w
C 2 99

11} [~ <

<] - [

< w -

ey z -

z F a) i b)
T U U P E AT T 98.5 Lot v 111
40 60 B8O 100 120 140 160 180 200 50 60 70 80 90 100 110 120 130 140

AVERAGE NUMBER OF CANDIDATE WORDS

AVERAGE NUMBER OF CANDIDATE WORDS

Figure 2.22: Results as a function of the beam search threshold: a) for 7 speakers (5 male,
2 female), b) averaged results

260

240
220
200
180
160
140
120
100

AVERAGE NUMBER OF CANDIDATE WORDS

EENEAE ESEEES AN ER S B R L R

NUMBER OF SYLLABLES

Ol Ll Zyl_ﬂbl

50

40

30

20

10

PERCENTAGE OF WORDS

Figure 2.23: Average number of hypothesized words and distribution of words in the GEO

2.4 Word Representation 47

32

30

28

26

24

LI DL L

22

20~

18~

AVERAGE DURATION/SYLLABLE (csec)

16 I N R W B
0 1 2 3 4 5 6 ki

NUMBER OF SYLLABLES

Figure 2.24: Syllable duration

in the list, ordered by cost, of candidates generated by the lexical hypothesizer; in 62% of
the cases the correct word is in the set of the best-scored phonetically equivalent words
and only one word is hypothesized in 13% of the cases, as shown in Figure 2.26a where a
histogram representing the distribution of the size of the candidate word list is reported.

Use of heuristics

Robust heuristics can be introduced in the lexical access procedure to reduce the average
number of hypothesized words and to speed up computation.

The first one (H;) smoothes out the strings of phonetic labels produced by the frame-
by-frame classifier through a majority voting filter. Two strings of symbols are considered:
one corresponding to the best first classification and the other one corresponding to the
sequence of alternative decision labels. The second decision symbol is set to the value
of the best one whenever the classifier has taken a single decision. The majority voting
filter, applied to a shifting window of N (odd) frames, associates to the central frame
of the window the phonetic labels that most frequently appear as the best first and
the alternative decision respectively. Fewer micro-segments are obtained because many
spurious segments are eliminated. This reduction of the number of micro-segments reduces
the number of operations needed for matching as well. Unfortunately, by increasing the
window length, some correct segment disappears. Therefore, the number of spurious
insertions decreases, but the number of deleted segments increases. The optimal window
length depends on the speaking rate. Several experiments were performed for all 7 speakers
varying the beam search threshold.in ozder to achieve, for a given length of the majority
voting filter window, an average inclusion rate of 99.7%, the same obtained excluding
any filtering (window length equal t0 1). The results are shown in Figure 2.27 where the

48

INCLUSION RATE (%)

100

90

80

70

60

50

|| | | | -

0

10 20 30 40 50 60 70 80 90 100

BEST CANDIDATE POSITION

(a) 1011 words

INCLUSION RATE (%)

2 The Recognition Algorithms

100

90~

80

70 H

60

50

40

1

1 1 1 i | 1 1 !

0

20 40 60 80 100 120 140 160 180 200

BEST CANDIDATE POSITION

(b) 18388 words

Figure 2.25: Cumulative inclusion rate as a function of N-best candidate words

(%)
14

300

100 200 400

NUMBER OF CANDIDATE WORDS

(a) 1011 words

500

(%)

TTTYTTT 7T 7T

500 1000 1500 2000

NUMBER OF CANDIDATE WORDS

2500

(b) 18388 words

Figure 2:26:pNumber of candidate words histogram

2.4 Word Representation 49

190 9600
8
g 180 &
= 8
w 170+~ =z
= — 8000 o
a [
= 160 - z
Z z
O 150 - e
5 140 —7000 &
& &
£ 130 £
2 E
& 120~ —{6000 Y
< <
& &
£ no- =
100 L—1 1 1 L L ls000

WINDOW LENGTH

Figure 2.27: Average number of candidate words (A) and average number of expanded
nodes (B) per word vs. filter window size

average number of candidate words (curve A), and the average number of nodes expanded
per word (curve B) are plotted as a function of the filter window size. A window size
value of 5 frames gives the minimum number of word candidates as well as the minimum
computational complexity. A second heuristic (H;) refers to reliable segments. Let R (s)
be a function that associates a number rf to the label s} of a micro-segment M(t) and let
R (s!) be monotonically increasing with the probability that s! is a correct classification
of the micro-segment M(t). If such a function exists, and if it is continuous, a threshold
z and a value v can be found such that:

ri>2z => Prob [sf 18 a correct classification | M(t)] >v (2.38)

1

Thus, in principle, a threshold z can be chosen such that it is possible to detect segments
whose probability of being misclassified is below a fixed value, or, in other words, segments
that can be considered correctly classified with a given confidence value. The reliability
measure associated with micro-segments can be chosen as function R according to the
results shown in Figure 2.28, where an estimation of the probability that a micro-segment
label is correct, given its reliability, is presented for each phonetic class. A value of the
threshold zp, (shown by an arrow in the figures) was fixed for each class kn,, so that all
training set segments with reliability greater than zy, were correctly classified:

af >z, = si € K, (2.39)

T

During lexical access, a segment satisfying the above mentioned conditions is considered
correctly classified. Hence, it cannot be inserted or substituted for a reference symbol
that does not belong to the same phonetic class. This further local path constraint in the

50

N~
LI L B

PLOSIVE
| 1 l 1

0.6 0.8

1.

0.2

LIQUID/NASAL
Ly 1)

0.6 0.8

1.

CENTRAL VOWEL
| I T

0.6 0.8

1.

2 The Recognition Algorithms

—_

o O o o
oON » o ® O

FRICATIVE
O B T
0.6 0.8

©C O O O =

FRONT VOWEL
Log 1

0.6 0.8

-
.

o o © o
N 2O o O

BACK VOWEL
| I T

0.6 0.8

Figure 2.28: Probability of correct classification of a micro-segment vs. its reliability

2.5 Verification Module 51

3DP procedure has two beneficial eftects: an appreciable reduction of the computational
load and of the average number of word candidates, for the same inclusion rate. As can
be observed in Table 2.11, a small reduction of the inclusion rate is traded for a significant
reduction of the average candidate word number and of the computational load expressed
in terms of average number of expanded nodes. '

Similar considerations lead to a third heuristic (Hj;) that exploits robust cues for de-
ciding that a particular phonetic class cannot be hypothesized for a given segment. If
phonetic class k, cannot definitely be assigned to a micro-segment, it cannot be sub-
stituted in the 3DP matching for a symbol of the representation alphabet belonging to
class k,. Frame energy, for example, has been used as a cue for deciding that a high
energy micro-segment cannot be substituted for a plosive sound. Table 2.11 shows the
performance obtained by using the H, and Hj heuristics, and a 5-frame window majority
voting filter (H,).

As mentioned in the preceding subsection, the largest set of word candidates is gen-
erated by short words which, however, are generally well segmented. Hence, it is likely
that the correct word is in the first few positions in the candidate list. candidate word
list, but the list is generally very short. The fourth heuristic (H,) introduces, therefore, a
constraint on the maximum number of active nodes of the lexical tree that are considered
for word retrieval at the end of the search: only the N best nodes are allowed to generate
word hypotheses. This constraint is not used during the search because it would be too
expensive to order the best partial paths according to their cost, rather than performing
a simple beam search.

Figure 2.25 shows that more than 99% of inclusion rate can be obtained keeping only
the first 60 best candidate nodes. Recall that the number of candidate nodes is different
from the number of candidate words, since more than one word can be associated with a
candidate node. This result is also illustrated in Figure 2.29, that shows the inclusion rate
and the average number of word candidates obtained by varying the value of the maximum
number (J) of best candidate nodes (Mj, 7 = 40,...,00) kept by the hypothesizer.
The performance of the system using all these heuristics, constraining the maximum
number of final active nodes to 140 is detailed in last column of Table 2.11

In Figure 2.30a the average inclusion rate is shown as a function of the vocabulary size.
Refer also to Figure 2.25b and Figure 2.26b for statistics about experiments made with the
18388-word vocabulary. By increasing the vocabulary size from 1011 words to 18388, and
using the same beam search threshold, a slight reduction (0.7%) of the average inclusion
rate is observed. The increase of the average number of word candidates is presented in
Figure 2.30b. It is worth noting that the percentage of the vocabulary words that must be
verified decreases as vocabulary size increases: the bold right lines in the figure represents
10% and 2% of the vocabulary size respectively.

2.5 Verification Module

This module applies a more detailed phonetic knowledge than the phonetic classification.

A Word Translator generates, from the orthographic form of the words, one or more
phonetic transcriptions through a set of rules. Multiple transcriptions are due, for exam-
ple, to the ambiguity introduced by affricates and by intervocalic /s/ that, in Italian, can
be voiced or unvoiced depending on the speaker’s regional attitude. Moreover, diphthongs

52

100.0

2 The Recognition Algorithms

99.9 -

99.7
98.6 -
99.5
99.4

99.3

AVERAGE INCLUSION RATE

99.2

99.1 =

|

99.0
30

40

50

60

70 80

AVERAGE NUMBER OF CANDIDATE WORDS

Figure 2.29: Average inclusion rate and average number of candidate words as a function

of the number of final active nodes

100

99.8

99.6 [~

99.4 -

99.2 |-

99

AVERAGE INCLUSION RATE

98.8 -

98.6 I~

a)

| EYS BTN A U G S BT O

0 2 4 6 8 10 12 14

VOCABULARY SIZE (X 1000)

16 18 20

AVERAGE NUMBER OF CANDIDATE WORDS

500

400

300

200

100

(O BV T T U R T A A

0
0

2 4 6 8 10 12 14 16 18 20

VOCABULARY SIZE (X 1000)

Figure 2.30: a) Average inclusion rate and b) average number of candidate words as a

function of the vocabulary size

2.5 Verification Module 53

Heuristics H1 H1+H2 H1+H2+I'T3 H1+H2+H3+H4
Insertion rate 99.7 99.5 99.5 99.5
Average number of | 115.2 79.1 72.4 62.8
candidates
Average number of | 5874 4546 4280 4280
expanded nodes
Average number of | 14570 | 9828 8771 8771
operations

Table 2.11: Word hypothesization module performance

>

[
3

Figure 2.31: HMM of the word /SIENA/

and hiatuses are not discriminated by the Word Translator, which always includes both
these forms in the translation. The current set of rules produces 1.44 transcriptions per
word, on the average. Every word phonetic transcription is then represented by a se-
quence of phonetic units, taking into account coarticulation phenomena occurring in the
transitions between different sounds. Phonetic units are modeled by left-to-right HMMs
with different number of states [11, 42, 1]. An example of an HMM for the Italian word
/SIENA/ is given in Figure 2.31.

The verification module accepts as input the list of word candidates produced by
the lexical access module. The HMMs sequences corresponding to this set of words are
organized into a tree structure, where transcriptions with common initial parts share
the same branches. Then, a beam search Viterbi procedure is performed on the tree to
evaluate the most likely words.

b4 2 The Recognition Algorithms

2.5.1 The Recognition Units

Sub-word recognition units offer several advantages over whole word models. If the vo-
cabulary of the system is very large or if the application needs frequent updates, a whole
word approach is not appropriate because it requires new training sessions. Furthermore,
a substantial saving in storage is obtained since the same unit appears in different words
but its parameters are stored only once. Another advantage of sub-word units is that
properly designed units can perform better than whole words models in discriminating
words that include similar parts (e.g. minimal pairs) [45]. In fact, the difference often
observed for the emission densities of the common part of two slightly different words is
generally due to the limited size of the training set. The consequent difference in the par-
tial likelihoods computed during recognition can exceed the differences in the phonetically
different part. Since in the sub-word approach phonetic portions that are equal are rep-
resented by the same model, the differences in the discriminant parts are enhanced. This
consideration suggests the representation of steady parts of the phonemes (whenever they
can be defined) by the same model, and to account for transitions by means of additional
models only if they carry significant discriminant information {11]. This definition of the
sub-word units was first proposed for template-based systems [46], leading to satisfactory
results both for Italian [9) and for English [44].

These recognition units can be considered as a tradeoff between diphones and phonemes.

Diphones, defined as the speech portion between two consecutive phonemes, take coarticu-
lation effects into account since the transitional effects are included in the units. However,
as in a language there is a large inventory of diphones, it is difficult to obtain good es-
timates of the parameters of their HMMs using a limited training set. Moreover, the
model of the steady part of phonemes is included, with relevant differences, into a num-
ber of different models leading to poor estimation. Finally, the information included in
the transition part of many diphones is not significant for the discrimination of adjacent
phonemes. For instance, the transition between an unvoiced fricative and a vowel (like

/fa/ in the Italian word /fare/) does not carry necessary information for the classification
of the phonemes /f/ and /a/.

On the other hand, the number of phonemes is very small, thus they are suitable for
accurate statistical modeling [5] but their performance [11] is poor when the discriminating
information among different sounds depends on the transition towards adjacent phonemes.
For instance, unvoiced plosives, such as /k/, are acoustically realized by a short interval
of silence followed by a burst. It is impossible to classify a plosive only by means of the
burst since most of the discriminating information is in the transition.

In order to define an appropriate set of recognition units, a special language and the
corresponding compiler [12] was designed. It allows any set of recognition units to be
easily defined and words to be automatically translated from their orthography directly
into the sequence of defined units. 26 phonetic units were considered for the Italian lan-
guage. Of the 650 (26 » 25) possible transition units, 101 only were selected according to
phonetic knowledge and observing the results of recognition experiments carried out with
difficult vocabularies such as minimal word pairs [11]. These 101 transition units include
all plosive/vowel, affricate/vowel and some sonorant/vowel transitions in addition to some
consonant clusters. Transitions from vowel to sonorant are considered only for consonants

2.5 Verification Module 55

orthographic phonetic translation into
form form units
SETTE sette s e - te e
APPARTIENE | appartjene [a - pa_ar r - f1 1 e n e
AVERE avere a av_ve e er re e
AVREBBE avrebbe |a av v vr t 1 e b be e
ANDARE andare a n b da a ar re e

Table 2.12: Some examples of word translation from orthographic form to phonetic form
and to their corresponding sequence of recognition units. The recognition units ’-’ and
'b’ are the silence and the voicebar respectively

/r/ and /v/. As duration is not modeled very well by Markov models [41], geminate con-
sonant are represented as singletons, so that words SETE (thirst) and SETTE (seven), for
instance, are phonetically indistinguishable; their disambiguation can be deferred to the
higher level linguistic processing. 22 steady units complete the unit inventory: 5 vowels, 6
sonorants, 5 fricatives, 4 affricates, silence and voicebar. Some examples of the translation
from the orthographic form to the phonetic one and finally to the corresponding sequence
of units is given in Table 2.12. Details about the context-sensitive translation rules can
be found in [12, 11]. Similar approaches have been proposed in the past: using left and
right contextual phonemic units [48] obtained as a weighted estimation from context-free
and context-dependent units, where the weights depend on the number of occurrences
of each unit in the training set, or manually choosing which context could improve the
recognition rate by means of an accurate error analysis [15].

2.5.2 Model Estimation

Hidden Markov modeling of the sub-word units allows model training to be performed
automatically performed.

As it is impossible in most of the cases, and always impractical to pronounce an iso-
lated sub-word unit (such as a phoneme or a diphone), the training procedure relies on
the observation of larger events such as words or sentences. The required observation sub-
sequences could be made available by hand segmentation and labeling of the utterances,
a time-consuming and error-prone process. It is possible, on the contrary, to estimate
the model parameters of a set of sub-word units, without human interaction. From the
orthographic form of the training vocabulary words, different phonemic transcriptions are
generated according to their possible pronunciations and taking care also of the ambiguity
arising in the translation process. These alternatives are automatically converted into the
unit sequence. This operation is performed for all training words. The training set is
composed of one or more utterances of the training vocabulary represented as sequences
of Vector Quantization codewords. For each utterance, a forward and a backward ma-
trix is computed bootstrapping the system from untrained HMMs (uniform transition
and emission matrices). For every sub-word unit appearing in the training data base the
transition and emission probabilities,are estimated by using a generalization to multiple
observations of the classical re-estimation formula [34, 1]. This procedure is repeated
until convergence is reached. An important problem arises when a state is assigned zero

56 2 The Recognition Algorithms

IN HMM REPRESENTATIONS, THE PROBLEM OF UNOBSERVED SYMBOLS DUE TO THE FINITE
SIZE OF THE TRAINING SET, IS APPROACHED BY MEANS OF A PARZEN ESTIMATOR

DX

I
]
|
X4 X2 X3 X1 XN

APPROXIMATION OF A DENSITY FUNCTION BY THE SUM OF GAUSSIAN KERNELS
Figure 2.32: Approximation of a density function by the sum of Gaussian kernels

probability for a given symbol because it has never been observed in that state during the
training session. This problem, generated by a poor estimation of probability densities,
due to the limited number of training examples, is generally solved by interpolation [5] or
by setting to a small constant value the probabilities that are null [34].

In our system, a Parzen estimator with normal kernel [19] (see Figure 2.32) smoothes
the emission probability estimates b;(k) of codeword k being in state 1 after the Forward-
Backward iterations [10, 11] according to this formula:

—d*(k,m)

bi(k) = C; i bi(m) * exp D

m=1

(2.40)

where d(k,m) is the Euclidean distance between the k-th and the m-th vector quantizer
codewords, nc is the number of codewords in the codebook, D is a fixed parameter {the
Parzen radius) and C; is a normalization factor such that

{::Ei(k) =1 (2.41)
k=1

2.5.3 Experimental Results

Each speaker trained a set of 126 unit models by pronouncing once the words in the TRA
dictionary. Each training set consists of about 20 minutes of speech. These utterances
were then coded by means of a speaker-dependent 7-bit vector quantizer. Five iterations
of the Forward-Backward algorithm were sufficient for obtaining stable estimates of the
parameters of the models.

The confusion matrix among phonemes (steady units) is shown in Figure 2.33.

Curve B in Figure 2.34 shows the recognition rate, averaged over all speakers, as a
function of the best candidate position for the two-pass approach {(hypothesis generation

2.5 Verification Module 57

bdgt kp ff vs 2z |l rAmnmndatsdsty | wae |l owu
b |87 3 9
d 77|19 3
g 80]
t 70|19 |9
Kk 96 3
P 3 |e6
/ 96} 3
f 3]9|83
v |19 3 4 22| 3]
s oo
z 93| 8
! 96 3
r 3 Il 377 3 3
A 8 3 3 83
m 9 9|s 25|29 |12
n 3 3 9 67|12
n 6 22{70
dz 3 96
ts foo
dsz a8 3 41 6
t/ 32 67
J 36 63
w 100]
a 100}
) 93| 6
! 100
° 90|90
100}

Figure 2.33: Confusion matrix among phonemes

58

100

2 The Recognition Algorithms

B8
A
99
® 98
=z
o
-
597
z
<}
a
]
@ 96
95
94 1 | { 1 L 1 | I {
3 4 5 6 7T 8 9 10 =«

BEST CANDIDATE POSITION

Figure 2.34: Recognition rate vs. N-best word scores for the 1011 word vocabulary

by partial phonetic description and successive detailed verification by stochastic decoding).
Every word hypothesized by lexical access is represented by the set of its transcriptions
into recognition units. All these representations are then compiled into a tree whose
branches are the sequences of states of the HMM recognition units, and whose leaves
identify words. A beam search Viterbi procedure operates on a tree to evaluate the best
state sequences. The paths that are still active at the end of the search generate a set
of word hypotheses ordered according to their likelihood. 95% of words attain the best
first likelihood, while 99.3% of the uttered words are correctly included in the final set
of hypotheses, whose average size is 4.4. Curve A in Figure 2.34 refers, instead, to the
results obtained in the direct approach, excluding the lexical access module, hence by
applying the same beam search Viterbi procedure to the tree representing all vocabulary
words. Obviously, slightly worse results are obtained in the former approach because
the lexical access module propagates its errors (correct words missing in the candidate
list) to the verification module. It is worth noting, however, that there is no difference
in the recognition rate for the best first hypothesis. This means that a missing word in
the candidate list produced by lexical access is also missed as the best scored one by the
direct approach. By increasing the rank of the accepted hypotheses, the difference between
the two curves keeps constant and depends only on the error of lexical access (0.5%). In
Table 2.13 a comparison of the performance of the two approaches can be found. As far as
complexity is concerned, the phonetic segmentation and the generation of the hypothesis
tree for verification are negligible in comparison to the matching. Matching requires a
basic computation both for lexical access and for verification: the dynamic expansion
of a trellis node. It consists in the evaluation of the cost of expanding a partial path
from _an_origin node to a destination node, and in its comparison with the cost of the
current best path reaching the destination node. As the complexity of cost computation
1s approximately equal for lexical access and for verification, a good approximation of the

2.5

Verification Module 59
Direct approach | Two pass approach
Best first recognition rate 95.0 % 94.9%
Inclusion rate 99.9 % 99.3%
Number of hypotheses 5.5 44
Number of operation/word - 9342
in lexical access
Number of operation/word 99795 17200
in the verification module '
Total number of 99795 26542
operation /word

Table 2.13: Comparison of the one and two pass lexical access strategies

computational complexity of the two approaches can be given in terms of the average
number of expansion operations. A complexity reduction of about 82% is achieved.

the

Figure 2.35 shows the recognition rate as a function of the best candidate position for
two-pass approach for the 18388-word vocabulary. The best first recognition rate is

84.7%. Relevant improvements, similar to those in Figure 2.34, can be observed for the
best two candidates, reaching more than 91% of accuracy. About 99.2% of the words are
included in the final set of hypotheses whose average size is 21.3.

2.5.4 Conclusions

The main suggestions deriving from the hypothesize and test approach can be summarized
as follows:

It is very easy to reach about 90% of inclusion rate in the set of candidate words,
but the real problem in large-vocabulary lexical access is to obtain almost 100% of
inclusion rate and a reasonably small number of word candidates.

A coarse phonetic segmentation can be more accurate than a detailed one, but few
misclassifications can dramatically reduce the performance of a lexical access due to
the small redundancy of the code.

Robust phonetic segmentation can be achieved by generating, rather than a sequence
of segments, a lattice of phonetic hypotheses to be matched against the vocabulary
words which can be represented by a graph model including statistics about possible
segmentation errors.

the lexicon can be effectively represented as a tree, of phonetic nodes in the hypoth-
esize step, and of HMM sub-word units in the verification step.

A three-dimensional DP matching algorithm has been introduced that performs bet-
ter than other conventional algorithms.

A suboptimal version of the matching procedure can be used without appreciable
performance degradation.

The_experimental results show the capability of the statistical models and of the

lexical constraints to cope with the errors of the segmentation module. The accuracy of

the

HMDMs of the sub-word phonetic units in the verification phase has also been assessed.

60 2 The Recognition Algorithms

100

98

96

94

92

90

LML

RECOGNITION RATE (%)

-1:]

86

gall 4 1 0 1 4 a4 2 1)
1. 2 3 4 5 6 7T 8 9 10 o

BEST CANDIDATE POSITION

Figure 2.35: Recognition rate vs. N-best word scores for the 18388-word vocabulary

Over 99% of the correct words are within the first 5 best candidates for a 1011-word
vocabulary; this accuracy reduces to about 96% for a 18388-word vocabulary.

2.6 Continuous Speech

The hypothesize and test approach has also been applied to the continuous speech recog-
nition task (see Figure 2.36). It is mainly suggested by efficiency issues. A continuous
speech hypothesizer for a large vocabulary requires that its task is constrained by lower
and higher level knowledge. While higher level constraints generally increase accuracy,
the same cannot be said for bottom-up constraints. As shown in Sect. 2.4.2, word prese-
lection reduces computational complexity at the expense of a small increase in error rate.
The Hypothesize process (Hp) generates a lattice of word candidates spanning the whole
sentence, and the Test process (Tp) verifies each hypothesized word by computing scores
of acoustic matching (see Figure 2.37). Each hypothesis consists of word identifier, log-
likelihood or probabilistic score and time boundaries. This lattice is then passed to the
linguistic module for syntactic/semantic parsing [17]. This straightforward strategy has
a number of drawbacks.

The first one is that quite often the boundaries of candidate words detected by the
hypothesization stage are incorrect. This inaccuracy has been observed to be the cause of
very.bad scores for the true hypotheses when the Tp is based on Hidden Markov Models.
Hence the Tp should not rely on the boundaries of the word hypotheses, rather only on
the region in which the word could be observed.

2.6 Continuous Speech

2 STEPS

———

1 STEP

COARSE
LEXICAL TREE

DETAILED

LEXICAL TREE

T-TREE

H-PROCESS kgéégg"
4
]
wour [“conme | [FOETE) [1 oTronen | [T
VOICE | EXTRACTION M VERIFIER FILTERS ayoORD o [svaren
T-PROCESS
LINGUISTIC | RECOGNIZED
DECODER ;’NTENCE

Figure 2.36: Block diagram of the continuous speech system

H-PROCESS T-PROCESS

COARSE VECTOR
INPUT: PHONETIC QUANTIZATION

LATTICE SYMBOLS
TREE OF COARSE TREE OF HMM

KNOWLEDGE: PHONETIC SUB-WORD
WORD UNITS
DESCRIPTIONS
THREE VITERBI
DIMENSIONAL DECODING

ALGORITHM: DYNAMIC OR
PROGRAMMING FORWARD DECODING
(30P)

TIME UNIT 1 MICRO-SEGMENT ~ 80 ms 1 FRAME = 10 ms

Figure 2.37: Processes involved in the two-step strategy

TO UNDERSTANDING
—>

62 2 The Recognition Algorithms

O30

MARKOV MODEL

IU—-—IU——{L‘ I IE E

Figure 2.38: Lexical tree for the hypothesisation level

The second disadvantage is a lack of efficiency for the computationally expensive task
Tp: it is not easy to organize the lattice into a structure like a tree or a graph, that would
allow an effective search strategy to be implemented.

Finally, the above described approach is strictly sequential: the verification process
cannot begin before the ending of the hypothesization process. This is in contrast with
a real-time implementation, hence a more tight interaction between the two modules is
suggested.

In the following, the extension to continuous speech of the basic modules implemented
for isolated utterance recognition will be decribed, and two control strategies will be
outlined for a continuous speech word hypothesizer.

2.6.1 Control Strategies

At the hypothesization level, word phonetic transcriptions are organized into a tree (Ht)
whose nodes represent coarse classes (Figure 2.18); terminal nodes have a link to the set
of words they represent.

At the Test (verification) level, the whole lexicon is organized into a tree (Tt) whose
nodes represent Hidden Markov Model states (HMMs) of sub-word units (Figure 2.38).
Hp and Tp algorithms are similar except for the score computation and for the kind of
transitions among the nodes of the trees. As syntactic constraints are not presently used
at this level, a word can be followed by every word of the vocabulary. Hence, whenever
a node in _the Ht (as well as in the Tt) has to expand beyond a terminal node, a word
15 hypothesized and the root node is considered again as a possible expansion. Each
active node must keep the information about the score and the time corresponding to the

2.6 Continuous Speech 63

path expansion to the root node for generating the beginning and ending time of a word
hypothesis along with its likelihood score.

This algorithm is an extension of the syntax-driven recognition algorithm described in [10]
where the syntax was described by a graph. While a graph allows only the best-matching
model to be detected, a tree permits all matching paths to be kept. The number of paths
can be limited at each step by the beam-search threshold.

Unless other constraints are introduced, the extension of the Tp (as well as the Hp)
to continuous speech produces, for each active terminal node, a complete word hypothesis
at each input frame (or micro-segment). A terminal node is generally active in a large
range of frames in the neighborhood of the correct word ending frame; all terminal nodes
would be always active unless beam search is used. Thus a decision process (Dp) keeps
only the best scored among all the hypotheses concerning the same word and starting at
the same frame.

Cascade integration

The first integration consists in the sequential application of Hp and Tp as depicted in
Figure 2.39

The Hp generates a coarse lattice of word hypotheses through the above described
procedure. The basic information shared among the Hp and the Tp is a mapping between
each vocabulary word and its corresponding nodes in the Tt. As the same word can
be hypothesized more than once in a given region, a decision process (DH) selects as
boundaries for a word candidate hypothesis the beginning and ending point of the largest
segment over which it appears. Thus, when the whole sentence has been processed by
the Hp, the information about the nodes of the Tt that could be active in each detected
segment is sent to the Tp. Thus the Tp estimates word likelihoods on the Tt. A node
of the Tt is expanded only towards the nodes that the Hp has marked as active at that
particular time interval. The decision process (DT) finally finds, for each detected word,
the best ending point.

The cascade integration solves the problem of inaccuracy of time boundaries, since
only regions in which word hypotheses can be found are given to the Tp, which uses this
information only to reduce the number of nodes that it will expand at each frame. As the
Tp cannot start before the Hp has processed the whole sentence, this kind of interaction
is not particularly suited to a real-time implementation. This problem has been solved
by devising a second scheme that exploits a tighter integration.

Full integration

In the full integration scheme of Figure 2.40 the Tp performs the main hypothesization
activity whose task is dynamically constrained by the Hp. After a micro-segment has
been processed by the Hp, the current Ht active nodes constrain the Tp node expansion.
To that purpose a mapping between the Ht and the Tt has been established. The Tp
expands a Tt node only if its corresponding node in the Ht is active at that particular
time frame.

For mapping the Tt on the Hp, each sub-word unit is associated to a string of coarse
classes, for instance: /ta/ = (pl, cv), /ts/ = (pl, fr).
Then the Tt, representing the whole lexicon, is built. Each node represents the HMM of

64

e e o -

SELECT MICRO
SEGMENT |

Y

EXPAND ACTIVE
H-NODES

!

UPDATE LIST OF
ACTIVE H-NODES

fun - . —— e — - -

|

o oo ol o = o — - —

SELECTION OF

WORD BOUNDS

2 The Recognition Algorithms

ACTIVE
H- NODES

| V.

COARSE
WORD
LATTICE

i —

y--————-==-7
|
SELECT FRAME J ' Y
{
] : HTOT
EXPAND ACTIVE |« | _MAPPING
T- NODES
L]
UPDATE LIST OF ACTIVE
ACTIVE T- NODES T- NODES

SELECTION OF
BEST TERMINALS

WORD LATTICE

2.6 Continuous Speech

65

Hp SELECT MICRO
™ SEGMENT |

Y

EXPAND ACTIVE
H- NODES

Y

UPDATE LIST OF
ACTIVE H- NODES

b cmrrrcc e e, —c— e e e e e ACTIVE

H- NODES

SELECT FRAME J
Tp —— INSIDE MICRO-
SEGMENT |

!

RTOT

EXPAND ACTIVE
T- NODES

t—_———1 MAPPING

Y

UPDATE LIST OF
ACTIVE T- NODES

Aptiginggipluglgiugiond Punghu pringhughopdoglgingiogunguduniog ..-..".':..":..".“.:_.._-.'

ACTIVE

Dp BEST TERMINALS

T-NODES

F
. SELECTION OF
|

|

-

PR U SR P e ——

WORD LATTICE

Figure 2.40: Full integration

66 2 The Recognition Algorithms

a recognition unit. The Ht is then built by substituting the corresponding sequence of
coarse classes to each node of the Tt. Of course, each Ht node subsequence showing the
repetition of the same symbol is collapsed into a unique node. The mapping from the Tt
to the Ht is obtained through a pointer from a Tt node to the identifier of the Ht nodes
it has generated. Figure 2.41 illustrates a simple example of a Tt and its corresponding
Ht for a three-word lexicon. The numbers within the Tt nodes are the pointers to the
corresponding Ht nodes.
The control strategy can be summarized as follows:

e For a given input micro-segment, the paths corresponding to active Ht nodes are
expanded according to the constraints given by the SID model. Node expansion,
controlled by a beam search threshold, generates a new list of active nodes.

¢ Each path corresponding to an active Tt node could be expanded according to the
transition defined for the HMMs, but the expansion is allowed only if the destination
node has a pointer to an active Ht node. The node expansion, controlled by a beam
search threshold, generates a new list of active Tt nodes. All active terminal nodes
are given as input to the Dp. This step is iterated for each input frame belonging to
the currently analyzed micro-segment.

¢ The Dp receives as input all active Tt terminal nodes for each processed frame. The
corresponding word hypotheses are then compared with the list of those already
collected at previous frames. If no hypothesis exist in the list having the same word
identifier and the same beginning frame, the new hypothesis is inserted, otherwise
the new one updates the old one only if it has a better score.

This tighter integration scheme is suitable for real-time implentation as the three
steps outlined above can be easily pipelined. Its drawback is that the Hp constraints are
looser than those imposed by the cascade integration. In fact, as the cascade integration
allows only complete word hypotheses to be propagated from the Hp to the Tp, the full
integration activates also the nodes corresponding to partial word hypotheses, that could
be later pruned away.

2.6.2 'Word Hypothesis Normalization

The score of a word hypothesis is computed by subtracting the score of the tree path
at the root node to the score that the path attains at the terminal node. The log-
likelihood score L(W) of a word hypothesis obtained by the Viterbi algorithm is defined
as the logarithm of the best path probability given the observed sequence of codewords
O, L(W) =logmax; P(S;,0 | M), where S; is a state sequence within the word model
M. Hence the likelihood of word hypotheses generated in different regions of the sentence
cannot be compared as they refer to different observations. As the scores activate an island
driven parser at the syntactic-semantic level of the system [18], they must be normalized
to correctly represent the evidence of the hypotheses.
Rather than using the Viterbi likelihood, the observation probability defined as:

P(M|O) = P(O|M)P(M)/P(O)

can be used. P(O|M) is computed by the Forward algorithm, while P(M) probabilities,
in the present implementation, are uniformly distributed. Finally P(O) can be derived

2.6 Continuous Speech 67

o o oR Ra a

- .

1

R
T
prE

I

[/ .

T

£

|

o o
E -

1R Ro (] n fa 130

Y2 la|lo]lw]l]ln]]r
H " H - fiRentse
(] NIETITR IR IR I

Figure 2.41: Example of Ht/Tt mapping

from the sum of the probabilities that each node of the tree attains at the ending frame of
the considered word hypothesis. An efficient procedure for the computation of P(M|O)
has been implemented that relies on the scaling coefficients introduced in [34] for the
computation of the forward probabilities in the HMM training. The above probability
can be computed in the Tp, by using the forward probability estimation within a word
model, while the Viterbi decoding selects the best terminal node for the path expansion
to the tree root.

2.6.3 Lattice Filters

Word lattices produced by the HMM verifier are of the order of 500-2000 words, with ref-
erence to sentences of 4-10 words. Two heuristic lexical filters, F1 and F2 (equation 2.42),
are applied to the output of the verification process for pruning out unlikely hypotheses,
so as to reduce the lattice size to the order of 200-500 words. Parameters of the lexical
filters have been tuned to reduce as far as possible the lattice size without affecting correct
word hypothesization rate.

The following rules are applied, with reference to two conflicting hypotheses, w, and
wp, with log-score s, and s,, and time limits ¢}, t2 and ¢}, t2 respectively.
In F1 w, filters out w; if:
a)tl<tl and 2>t
b) 8, < 8, —d,
In F2 w, filters out w, if:
c)tl>ti+d, and & <tl-d

68 2 The Recognition Algorithms

LATTICES ARE FILTERED BY RULE BASED LEXICAL FILTERS
TO RULE OUT UNLIKELY HYPOTHESES

t1a w, tza
L "
F1 AF,
tb w, Lb

F1: w, FILTERS OUT w,
F2: w; FILTERS OUT W,

L]
F2 AF,
L |
t‘,a w.’ t’za

Figure 2.42: Lexical filters

d) signal energy in [ti,t},] and [tf,,tﬁ] > eg
e) no other word in the lattice ends in [tl tl] or starts in [t2 tz]

al’’p P?7a
f) 84 < 8p < 8, + d?

d,, d}, d?, and ey are properly chosen thresholds.

2.6.4 Efficiency Measures

A desirable property of a good word hypothesizer for a continuous speech recognition and
understanding system is that all uttered words appear in the lattice, they are correctly
aligned and that the lattice is as small as possible. Furthermore, correct hypotheses should
have better acoustic scores than wrong ones, so that their retrieval during a score-driven
syntactic and semantic analysis is not delayed; this property directly affects the linguistic
analysis performance, both in terms of successful understanding rate and of computing
time.

These considerations lead us to choose the “efficiency” measure introduced by Smith
and Erman [50] for assessing the “quality” of a lattice. This quality can be measured
by the level of appearance of correct hypotheses among all the others. So the RANK R;
of a correct hypothesis H; can be defined as the number of wrong hypotheses H which
compete with H; and have a better score:

R; = [H : s(H) > s(H;), Comp(H, H;)) (2.42)

Comp(H, H;) is a predicate with value true if the overlapping in time of H and H; is
greater than the half of the shorter of the two.

2.6 Continuous Speech 69

The efficiency of the i-th correct hypothesis E; is defined as E; = R%
The average efficiency of a lattice is defined as

where n is the number of words of the uttered sentence. E; can be thought of as the
amount of work that has to be done to retrieve the correct hypothesis H;, in terms of
number of wrong hypotheses that must be evaluated before H;.

The possible values for F range from 0, when no correct hypothesis has been generated,
to 1, when all uttered words are the best in the lattice. One consideration can be made: it
is questionable that only wrong conflicting hypotheses can delay the retrieval of a correct
one: in fact, if a region R; of the lattice has better scores, on average, than a different
region R, then wrong hypotheses in R; can delay the retrieval of correct hypotheses
in R,, even if they are not competing. Furthermore, the definition of competition is
rather arbitrary. So a new measure has been defined, based on the concept of Degree
of Appearance (DoA) of a correct word H;, defined as the rank of H; but relaxing the
constraint of competition:

DoA; = [H : s(H) > s(H;)] (2.43)

By taking the average on the whole lattice, we get the degree of appearance of the
lattice

n
DoA = 1, >~ DoA;
n k=1

The minimum degree of appearance is defined as DoAmin = min; DoA; , which
measures the depth of the correct word having the worst score in the lattice.

To find the sequence of correct words in the lattice, a forced parser has been imple-
mented, which is based on the concept of adjacency in time and on the scores of the
hypotheses. The forced parsing problem has been approached as a search in a directed
and weighted graph, whose nodes are the lexical hypotheses in the lattice. Two nodes
are joined by an arc when they are instances of consecutive words in the uttered sen-
tence, and satisfy adjacency constraints in time, properly defined; the arc is weighted
according to the amount of gap and overlap intervals between the corresponding lexical
items. This problem of minimum distance search in a graph has been solved by Dynamic
Programming and by the A* algorithm.

2.6.5 Experimental Results

In the following, experimental results computed over a corpus of 150 continuously uttered
sentences are discussed. A speaker-dependent voice-activated data retrieval system is
simulated, applied to a geographical semantic domain; the size of the lexicon is 1016
words.

The number of lexical hypotheses in the lattice affects the complexity of the under-
standing task, thus it is important to obtain small and reliably scored lattices, possibly
avoiding missing semantically meaningful words.

70 2 The Recognition Algorithms

|

m fiumi bagna

quale iseo ali enna_ nato rienza
gual gli_fiume fbagnano hanno
valli giglio : nei daile mar baano
po__ lesina nel_dai alla riva
dei umbri dal__ hanno fapno
nei, cime etna amato ung
quanti sioni_ getta enna_ trigno
acqua esce che una gllo
quante isole adda uno meno.
" avisio gche mar alto lig
agli est nera__ ngrd, provingia
gusna mesima elba arno Qo neg
zona degli, lunghe alla_ tra nen
sud esce umbra meng dal ..
negli negli maggiori nello
[T 1 N— agli, non ledro

Figure 2.43: Example of a lattice

In Figure 2.43 an example lattice is presented corresponding to the question “Quali
fiumi bagnano Torino ?” (“Which rivers wash Torino ?”). Words are ordered according
to descending scores, starting from the top of the figure; correct words are enhanced while
short connective words are not displayed.

Two approaches have been compared: in the first one (1 step), the decoding algorithm
is applied to the whole lexicon, represented by a tree of speaker-dependent HMMs, and
lattice growth is limited only by a beam search control strategy. In the second approach (2
step), the HMM decoding process is driven by a word preselection process based on coarse
phonetic segmentation of speech into 6 rough classes. The cascade integration scheme is
used for controlling the two processes, allowing an improvement of system efficiency at
the expense of accuracy. In fact errors made in the preselection stage cannot be recovered
during HMM decoding.

Two different decoding algorithms have also been tested (Figure 2.44), namely the
Viterbi (VIT) algorithm with log-likelihood score normalized according to the hypothesis
duration and the Forward (FORW) algorithm with score normalization as outlined in the
preceding subsection.

Statistics collected from the 150 sentences are shown in Table 2.14.

The top of the table shows statistics referring to computational load. The first and
the second row represent the average number of DP operations computed at each 10 msec
frame by the hypothesization and by the verification process respectively. The total DP
activity is shown in the third row. In the fourth and fifth row the average number of
active nodes for the two processes is displayed. The bottom part of the table refers to
lattice measures.

The Forward algorithm with score normalization yields a remarkable performance
improvement on the number of missing words, on the lattice efficiency and on the degree
of appearance (DoA). In particular, a few lattices in the one-step Forward case reach £ =
1: the n words of the sentence are the n best hypotheses, and they are correctly aligned
in time.

2.6 Continuous Speech

RECOGNITION STRATEGIES

1) 1 STEP, VITERBI DECODING

2) 1 STEP, FORWARD DECODING
3) 2 STEPS, VITERBI DECODING
4) 2 STEPS, FORWARD DECODING

1 STEP 2 STEPS
WHOLE LEXICON REDUCED WORD SET
DETAILED TREE DETAILED TREE
VITERB! - FORWARD
ONLY THE BEST PATH CUMULATIVE PATH SCORES
IS RETAINED ARE COMPUTED

THE 1-STEP STRATEGY REQUIRES ONLY VECTOR QUANTIZATION.
THE 2-STEP STRATEGY REQUIRES VECTOR QUANTIZATION,
PHONETIC LABELING, PHONETIC SEGMENTATION AND WORD
PRESELECTION THROUGH THE LEXICAL ACCESS MODULE.

Figure 2.44: Decoding algorithms

VITERBI FORWARD
One pass | Two pass | One pass | Two pass
Hp DP operations/frame 0 448 0 448
Tp DP operations 4133 3379 2901 2457
Total DP operations/frame 4133 3630 2901 2905
Active Hp nodes 0 87 0 134
Active Tp nodes 2370 1980 1619 1396
Lattice size 310 275 433 369.5
Missing words (%) 2.2 3.3 0.7 2.0
Lattice efficiency 0.465 0.465 0.697 0.690
Degree of appearance 0.149 0.151 0.479 0.464
Successful forced parsing 89.3 % 83.3 % 9% % | 89.3%

Table 2.14: Comparison of the one- and two-pass lexical access strategies

72 2 The Recognition Algorithms

30 |- + .

20

N. OF WORDS

10 [~

OVERLAPS GAPS

Figure 2.45: Histogram of gaps and overlaps along the best path in the lattice

The number of missing words increases, in the two-step approach, due to two kinds of
problems:

e bad phonetic segmentation, which results in a mismatching at the hypothesization
level, with consequent pruning of the correct path during the search along the Ht
tree;

e bad starting or ending point detection of the H process, which reflects in a bad
acoustic matching at the verification level, with consequent pruning of the correct
path during the search in the Tt tree.

The Viterbi verifier gives slightly worse results compared to the Forward one. The latter,
besides, better aligns in time the correct words. A histogram of the gaps and of the
overlaps (positive and negative side of the abscissa respectively) computed through the
forced parser is plotted in Figure 2.45.

Viterbi-scored hypotheses (dotted line) are shifted toward the increasing gap side
with respect to the Forward-scored ones (continuous line). It is worth noting that a
better alignment in time reflects in the possibility to adopt tighter adjacency constraints
at the linguistic parser level, therefore reducing the number of sub-sentence hypotheses
to be generated before obtaining the parse of the whole sentence.

2.7 Conclusions

A high-performance speaker-dependent continuous-speech word hypothesizer for large vo-
cabularies is the final result of the activities carried out in subtask 2.1 of project P26.
Most of the algorithms and architectures developed in this framework are applicable also
to high performance, large and very large isolated-word recognition tasks. The major
results of this sub-task can be summarized as follows:

e Use of state-of-the art signal processing techniques for speech analysis.

2.7 Conclusions 73

¢ Novel techniques for phonetic classification, phonetic matching, and lexical access to
large vocabularies. A phonetic classifier that segments and labels speech in terms
of six broad phonetic classes attains 86.2 % and 93.7 % correct classification rates
when the first best choice and the two best choices are taken into account respectively.
Lexical access is performed by means of an original extension to 3 dimensions of the
classical Dynamic Programming algorithm.

e Sub-word speech units optimization. 24 stationary units and 101 transitory units
have been carefully selected and modeled.

¢ Efficient control strategies for interaction between lexical access and detailed Hid-
den Markov Model verification. 82% of computational complexity reduction can be
achieved by means of the lexical access module which is integrated with the verifi-
cation module for real-time oriented implementations.

¢ Vocabulary flexibility. Changing the lexicon is a simple operation that needs only the
new list of words in their orthogaphic form, because every word in a given language
can be synthesized as a HMM chain of sub-words units;

o Automatic training. No hand-labeling of speech data is required; automatic labeling
is obtained as a side-effect of the Forward-Backward algorithm used for statistical
training of Hidden Markov Models.

s Adaptability to different languages by proper definition of new sub-word units and
by replacement of orthographic-to-phonetic rules.

¢ Capability of real-time performance with a multi-DSP architecture and of parallel
implementability of the algorithms.

o Efficient continuous speech word hypothesization and connection with linguistic mod-
ules.

A multi-speaker speech data base has been collected, and graphic packages have been
developed for interactive monitoring of each level of processing, from analog waveforms
to lattices of lexical hypotheses. Demonstrators have been defined and implemented for
the final technical meeting scheduled in October 1988. Extensive experiments have been
carried out for tuning system parameters, and system performance has been assessed at
~ach stage of processing.

System performance complies with the specified project target, and can be summa-
rized as follows:

¢ isolated word task: Several lexicons, ranging from 1K words to 18K words have been
used in the tests. Average recognition rates range from 95.3% for the 1K lexicon to
85% for the 18K lexicon with respect to the best-scored word; corresponding figures
with respect to the 5 best-scored words are 99.2% and 95.3% respectively.

e continuous speech task: correct words are hypothesized and properly aligned with
a 96.4% success rate. This results in an 80% successful understanding rate when
linguistic processing is applied. Average lattice size, with respect to uttered sentences
of 5.7 words on average, is less than 400 words.

Recognition tests were performed in a typical office environment by using a close-talk
microphone. Continuous sentences were produced at normal speed and with naturalness.

T4 2 The Recognition Algorithms

Algorithms and architectures are real-time oriented, and most computationally expensive
procedures are suitable for a parallel implementation.

ol Lalu ZJI—EL'

Bibliography

10.

11.

12.

13.

. “Annex to 1st six-month report of ESPRIT Project P26.” Technical Report, ESPRIT

P26, 1985

. “Annex to 2nd half-year report of ESPRIT project P26.” Technical Report, ESPRIT

P26, 1986

. “Deliverable 11a: preliminary report on studied algorithms and first evaluation ex-

periment of speech data reduction stage.” Technical Report, ESPRIT P26, 1986

. “Preliminary report on algorithms for speech data reduction.” Technical Report,

ESPRIT P26, 1984

L.R. Bahl, F. Jelinek, R. Mercer: “A maximum likelihood approach to continuous
speech recognition.” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 5, pp. 179-190, March 1983

J.M. Baker: “State of the art speech recognition, U.S. research and business update.”
Proc. of the European Conf. on Speech Technology, pp. 440-447, Edinburgh (UK),
Sept. 1987

R. Billi, G. Massia, F. Nesti: “Word preselection for large vocabulary speech recog-
nition.” Proc. of the ICASSP ’86, pp. 65-68, Tokyo, Japan, Apr. 1986

D.M. Carter: “The use of speech knowledge in automatic speech recognition.” Com-
puter Speech and Language, vol. 2, pp. 1-11, March 1987

. A.M. Colla, D. Sciarra: “Automatic diphone bootstrapping for speaker adaptive con-

tinuous speech recognition.” Proc. of the ICASSP ’84, pp. 35.2.1-35.2.4, San Diego,
Ca., March 1984

M. Cravero, L. Fissore, R. Pieraccini, C. Scagliola: “Syntax driven recognition of
connected words by Markov models.” Proc. of the ICASSP ’84, pp. 35.5.1-35.5.4,
San Diego, Ca., March 1984

M. Cravero, R. Pieraccini, F. Raineri: “Definition and evaluation of phonetic units
for speech recognition by hidden Markov models.” Proc. of the ICASSP ’86, pp. 2235-
2238, Tokyo, Japan, Apr. 1986

M. Cravero, R. Pieraccini, F. Raineri: “Definition of recognition units through two
levels of phonemic description.”: Proc. of the Montreal Symposium on Speech Tech-
nology, pp. 53-54, Montreal, Canada, July 1986

K.H. Davis, P. Mermelstein: “Comparison of parametric representation for mono-
syllabic word recognition in continously spoken sentences.” IEEE Trans. Acoust.,
Speech and Signal Processing; vol.28, pp 357-366, Aug. 1981

76

14

15.

16.

17.

18.

19.
20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Bibliography

. P. Demichelis, P. Laface, E. Piccolo, G. Micca, R. Pieraccini: “Recognition of words
in a large vocabulary.” Int. Workshop on Recent Advances and Applications of Speech
Recognition, pp. 115-123, Rome, Italy, May 1986

A.-M. Derouault: “Context-dependent phonetic Markov models for large vocabulary
speech recognition.” Proc. of the ICASSP '87, pp. 360-363, Dallas, Tex., Apr. 1987

P. D’Orta, M. Ferretti, S. Scarci: “Phoneme classification for real-time speech recog-
nition of Italian.” Proc. of the ICASSP ’87, pp 81-84, Dallas, Tex., Apr. 1987

L. Fissore, E. Giachin, P. Laface, G. Micca, R. Pieraccini, C. Rullent: “Experimental
results on large vocabulary continuous speech recognition and understanding.” Proc.

of the ICASSP '88, pp. 414-417, New York, NY, Apr. 1988

L. Fissore, P. Laface, G. Micca, R. Pieraccini: “Interaction between fast lexical access
and word verification in large vocabulary continuous speech recognition.” Proc. of

the ICASSP ’88, pp. 279-282, New York, NY, Apr. 1988
K. Fukunaga: Introduction to Statistical Pattern Recognition. Academic Press, 1972

A. Giordana, P. Laface, L. Saitta: “Discrimination of words in a large vocabulary
using phonetic descriptions.” Int. Journal of Man-Machine Studies, vol.24, pp. 453-
473, May 1986

V.N. Gupta, M. Lenning, P. Mermelstein: “Integration of acoustic information in
a large vocabulary word recognizer.” Proc. of the ICASSP ’87, pp. 697-700, Dallas,
Tex., Apr. 1987

D.P. Huttenlocher, V.W. Zue: “A model of lexical access from partial phonetic in-
formation.” Proc. of the ICASSP ’84, pp. 26.4.1-26.4.4, San Diego, Ca., March 1984

F. Jelinek: “Continuous speech recognition by statistical methods.” IEEE Proc.,
vol.64, pp. 532-556, Apr. 1976

F. Jelinek: “The development of an experimental discrete dictation recognizer.” IEEE
Proc., vol.73, pp. 1616-1624, Nov. 1985

A. Kaltenmeier: “Acoustic/phonetic transcription using a polynomial classifier and
hidden Markov models.” Proc. of the Montreal Symposium on Speech Technology,
pPp.- 95-96, Montreal, Canada, July 1986

T. Kaneko, N.R. Dixon: “A Hierarchical decision approach to large-vocabulary dis-
crete utterance recognition.” IEEE Trans. Acoust., Speech, Signal Processing, vol.31,
pp. 1061-1066, May 1983

D.H. Klatt: “Overview of the ARPA speech understanding project.” In: W.A. Lea
(ed.) Trends in Speech Recognition, pp. 249-271. Prentice Hall, 1979

D.H. Klatt: “SCRIBER and LAFS: two new approaches to speech analysis.” In:
W.A. Lea (ed.) Trends in Speech Recognition, pp. 529-555. Prentice Hall, 1979

T. Kohonen, H. Rittinen, E. Reuhkala, 5. Haltsonen: “On-line recognition of spoken
words from a large vocabulary.” Information Sciences, vol.22, pp. 3-30, July-Aug.
1984

P. Laface, G. Micca, R. Pieraccini: “Experimental results on a large lexicon access
task.” Proc. of the ICASSP 87, pp. 809-812, Dallas, Tex., Apr. 1987

Bibliography 7

31.

32.
33.

34.

35.
36.
37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

H. Lagger, A. Waibel: “A coarse phonetic knowledge source for template independent
large vocabulary word recognition.” Proc. of the ICASSP ’85, pp. 862-865, Tampa,
Fla., March 1985

J.N. Larar: “Lexical access using broad acoustic-phonetic classification.” Computer
Speech and Language, vol.1, pp. 47-59, March 1986

S. Levinson: “Structural methods in automatic speech recognition.” Proceedings of
the IEEE, vol.73, pp. 1625-1649, Nov. 1985

S.E. Levinson, L.R. Rabiner, M.M. Sondhi: “Introduction to the application of the
theory of probabilistic functions of a Markov process to automatic speech recogni-
tion.” Bell System Technical Journal, vol.62, pp. 1035-1074, April 1983

Y. Linde, A. Buzo, R.M. Gray: “An algorithm for vector quantizer design.” IEEE
Trans. on Communications, vol.28, pp. 88-95, Jan. 1980

S.M. Marcus: “Associative models and the time course of speech.” Bibliotheca Pho-
netica, vol.12, pp. 36-52, 1985

J.J. Mariani: “Speech technology in Europe.” Proc. of the European Conf. on Speech
Technology, pp. 431-439, Edinburgh (UK), Sept. 1987

W.D. Marslen-Wilson: “Speech understanding as a psychological process.” In: J.C.
Simon (ed.) Spoken Language Generation and -Understanding, pp. 39-67. D.Reidel ,
1980

B. Merialdo, A.-M. Derouault, S. Soudoplatoff: “Phoneme classification using
Markov Models.” Proc. of the ICASSP 86, pp. 2759-2762, Tokyo, Japan, Apr. 1986

G. Micca, R. Pieraccini, P. Laface, L. Saitta, A. Kaltenmeier: “Word hypothesiza-
tion and verification in a large vocabulary.” Proc. of the 3rd Esprit Technical Week,
pp. 845-853, Brussels, Belgium, Sept. 1986

R.K. Moore, M.J. Russel, M.J. Tomlinson: “The discriminative network: a mecha-
nism for focusing recognition in whole word pattern matching.” Proc. of the ICASSP
‘83, pp. 1041-1044, Boston, Mass., Apr. 1983

R. Pieraccini, F. Raineri, A. Giordana, P. Laface, A. Kaltenmeier, H. Mangold:
“Algorithms for speech data reduction and recognition.” 2nd Esprit Technical Week,
Brussels, Belgium, Sept. 1985

D.B. Pisoni, H.C. Nusbaum, P.A. Luce, L.M. Slowiaczek: “Speech perception, word
recognition and the structure of the lexicon.” , Speech Communication, Vol.4, pp. 75-
96, Aug. 1985

A E. Rosenberg, A.M. Colla: “A connected speech recognition system based on spot-
ting diphone-like segments - preliminary results.” Proc. of the ICASSP ’87, pp. 85-88,
Dallas, Tex., Apr. 1987

M.J. Russel, R.K. Moore: “Explicit modeling of state occupancy in Hidden Markov
Models for automatic speech recognition.” Proc. of the ICASSP ’85, pp. 5-8, Tampa,
Fla., March 1985

C. Scagliola: “Language models and search algorithms for real time speech recogni-
tion.” Int. Journ. Man-Machine| Studies, Vol.22, pp. 523-547, May 1985

78

47

48.

49.

50.

51.

52.

53.

54.

Bibliography

. G. Schukat-Talamazzini, H. Niemann: “Generating Word Hypotheses in Continuous
Speech.” Proc. of the ICASSP 86, pp. 1565-1568, Tokyo, Japan, Apr. 1986

R. Schwartz, Y. Chow, S. Roucos, M. Krasner, J. Makhoul: “Improved Hidden
Markov Modeling of phonemes for continuous speech recognition.” Proc. of the
ICASSP 84, pp. 35.6.1-35.6.4, San Diego, Ca., March 1984

D.W. Shipman, V. Zue: “Properties of large lexicons: Implications for advanced
isolated word recognition systems.” Proc. of the ICASSP 82, pp. 546-549, Paris,
France, May 1982

A.R. Smith, L.D. Erman: “Noah - A bottom up word hypothesizer for large vocabu-
lary speech understanding systems.” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol.3, pp. 41-51, Jan. 1981

S. Soudoplatoff: “Markov modeling of continuous parameters in speech recognition.”
Proc. of the ICASSP ’86, pp. 45-48, Tokyo, Japan, Apr. 1986

A. Waibel: “Prosodic knowledge sources for word hypothesization in a continuous
speech recognition system.” Proc. of the ICASSP 87, pp. 856-859, Dallas, Tex., Apr.
1987

R. Zelinsky, F. Class: “A segmentation algorithm for connected word recognition
based on estimation principles.” IEEE Trans. on Acoust., Speech, Signal Processing,
vol.31, pp. 818-827, Aug. 1983

V. Zue: “The use of speech knowledge in automatic speech recognition.” IEEE Pro-
ceedings, vol.73, pp. 1602-1615, Nov. 1985

Chapter 3

The Real Time Implementation of the Recognition
Stage

Robert Breitschaedel (Daimler Benz), Alberto Ciaramella (CSELT),
Davide Clementino (CSELT), Roberto Pacifici (CSELT),
Jean Pierre Riviere (Thomson-CSF), Giovanni Venuti (CSELT)

3.1 Introduction

Subtasks 2.2 and 2.3 of the P26 project have been devoted to the design of a hardware
architecture and to the implementation on it, in real time, of recognition algorithms al-
ready developed and experimented within Subtask 2.1.: this real time implementation of
the recognition stage will be called RICO in the following. Table 3.1 summarizes the key
points we considered when we started our work, i.e. algorithmic requirements, project
development constraints, hardware and software technology limits; they contributed to
the definition of RICO main characteristics, summarized in Table 3.2: in the following
of this paragraph we will detail these considerations. @ We started with the considera-
tion that recognition algorithms can be distinguished into two principal blocks, a first
“feature extraction” block till vector quantization and phonetic classification of frames,
and a following “search” block extracting the lattice of most likely words using dynamic
programming: this system “cut” corresponds to the minimal flow of data and besides
separates blocks with different computational characteristics. The first block in fact is
characterized by predictable execution times, cyclic computations, vector data structures,
not-too-large data addressing requirements: this block in fact implements “traditional”
DSP algorithms, for which the DSP chips fit well. Instead memory and computational re-
quirements of the second block heavily depend on the recognition vocabulary size and on
the speaking style (continuous speech of course is more demanding than isolated words)
and also exhibit a time dependency for the same utterance; in each case, for the real time
recognition of continuous speech with a 1K words vocabulary, the computational require-
ments are quite demanding, although were not clearly defined at the beginning of the
project. This block could have been implemented by using chips customized [1, 2, 3, 4, 5]
or optimized [6] for the dynamic programming algorithm: we had also the possibility of
using an internally developed chip of this kind (7, 8]. We preferred however to retain the
maximum of the flexibility allowed by a DSP implementation, although in this case the
computationythroughput,was;smaller,and some of the DSP capability remained unused
(typically the fast multiplier), whilst other features would be welcome, as wider data
memory addressing. Hence we chose the DSP [10, 11] with the widest data addressing

3 The Real Time Implementation of the Recognition Stage

Features extraction Predictable exacution time

Algorithmic
requirements
Large data addressing
Lattice extraction

Execution time both task and time
dependent

Fast hardware and firmware
Project development prototyping
constraints

Ease of expandibility

. Reduced addressing space
Hardware limits of DSP

technology in P26 time frame
Fixed point computations

DSP assembler programming
Firmware fimits of DSP

technology in P26 time frame .)
Lack of muitiprocessor operating

system

Table 3.1: Key points affecting RICO architecture

Common bus multiprocessor

Local plus global distributed biport
memory structure
Hardware architecture

and implementation Fast common bus (VME)

Asymmetric multiprocessor equipped with:
- general purpose master CPU (68020 based)
- custom DSP slave boards (TMS32020 based)

Large grain task partition
Software architecture Task synchronization through busy waiting

and implementation
Assembly programming for the slave CPUs

Pascal programmming for the master CPU

Table 3.2: RICO main characteristics

3.1 Introduction 81

PROCESSOR 1 PROCESSOR N

cPU cPU

LOCAL BUS I LOCAL BUS I
<

U adeed: [1 sdessd
MEMORY VEMORY MEMORY ssony
GLOBAL DISTRIBUTED
MEMORY
COMMON BUS
B s s S &

Figure 3.1: Common bus multiprocessor, with local plus global distributed biport memory

space available at the beginning of the project (64K words), and we further increased its
data addressing capability by an external page register [9]. As a result we defined as a
common iterable block a DSP board capable of supporting in real time all the computa-
tions foreseen at the beginning of the project for the feature extraction stage and with
the data addressing capability required by the dynamic programming stage: for achieving
real time this last computation however can be distributed and parallelized in different
DSP boards, as required by the specific application task. This tasks partition could be
mapped to different multiprocessor hardware architectures proposed in the literature, as
for example tree connected [12], multiple bus connected [13], processor clusters [14]. We
chose the simplest single bus architecture, and to be more specific a single bus architecture
with local memories and a distributed global memory, where distributed memories allo-
cated in different boards are biported to the common bus.This kind of architecture is the
most efficient between single bus architectures [29], since no contention arises either on
local buses or in biport memory accesses, but in the common bus access only. Figure 3.1
exemplifies such a kind of architecture. We further reduced common bus contentions:

e by using secondary buses for fast local transfers [18],

e by using a fast primary bus, the VME bus [15, 16, 17], which could carry heavier
traffic before saturating it.

82 3 The Real Time Implementation of the Recognition Stage

The implemented multiprocessor is asymmetric, with a general purpose master for han-
dling i/o and mass memory accesses with standard hardware and software facilities, and
some slaves DSP for speeding up more computational intensive algorithms: DSPs in fact
are an order of magnitude faster than general purpose microprocessors. Since the VME
bus is a widely accepted standard, we could use as far as possible commercially avail-
able boards for the master, the input-output and the memory, whilst we developed only
two kinds of project-specific boards, i.e. the DSP and the converter. In addition to the
hardware we developed both the system control firmware, and the algorithm firmware.
The algorithm firmware was split between the Motorola master (in Pascal language [28])
for less time-critical sections and the DSP (in assembler language) for more time-critical
ones: we point out that integer arithmetic and assembler language programming were a
typical limitation of DSPs, whereas today DSPs allow a faster firmware development cycle
since they support floating point arithmetic and C language [19, 20, 21, 22]. As a final
result we demonstrated in real time and with a good recognition accuracy the intended
recognition task of 1K words continuous speech using a not-so-expansive implementation.
This is a clear indication that present technology is already sufficient to build a realistic
speech recognition system for large-vocabulary continuous speech, and that technological
advances will simplify this task more and more: some of us in fact are now experimenting
this trend in new ESPRIT projects [24]. In the following we will present an overview of
the system implemented, then we will detail both the hardware and the firmware blocks,
finally we will show the system throughput.

3.2 System Overview

3.2.1 Functions Overview

RICO performs several functions, summarized in Table 3.3: first of all in recognition
mode it hypothesizes the uttered words, forwarding to the following understanding stage
the most likely ones in the application vocabulary; these are organized as a lattice for
the continuous speech and as a list for the isolated words case. Three different real time
recognition algorithms have been implemented:

¢ the single-step recognition for isolated words,
s the two-step recognition for isolated words,
¢ the single-step recognition for continuous speech.

All these tasks have been demonstrated in speaker-dependent mode with a high quality
head-mounted microphone input. The input utterance is presently limited by an initial
keystroke for the isolated words task and by an initial and a final keystroke for the
continuous speech task. As detailed before, in the single-step recognition algorithm the
whole application vocabulary is verified. In the two-step recognition algorithm on the
other hand a subset of the whole vocabulary is selected first using a coarse preselection,
then a more detailed verification is performed on this subset: this last strategy requires
more computations for small vocabularies, but becomes more and more efficient as the
vocabulary increases. The vocabulary size for which the single-step approach becomes

3.2 System Overview 83

- Single step for isolated words
Real time recognition -Two steps for isolated words

- Single step for connected words

- Single step for isolated words

Off-line recognition - Two steps for isolated words

- Single step for connected words

Acquisition and training

System testing

MultiDSP program loading facility

Table 3.3: Summary of implemented functions

more efficient than the two-step approach is larger in the continuous speech case than in
the isolated words case: hence for continuous speech we have implemented only the simpler
one-step strategy, given that in this project we aimed at vocabularies of the order of 1 K
words and in this case the single-step strategy is both easier to implement and faster in
execution time. Besides real time recognition, RICO performs other functions: first it can
perform off-line recognition, using prerecorded speech parameters as input: this is useful
in order to characterize the system both in accuracy and in speed and to tune some system
parameters. Then RICO can be used to drive the speaker acquisition session, displaying
the words to be uttered, synchronizing the utterance with start and stop keystrokes, and
extracting the parameters of the uttered words: at the end of the session this parameter
database is sent to a host VAX, which performs the parameter training; these parameters
are finally transmitted back to RICO for the following recognition phase. Figure 3.2
summarizes the system behaviour in these three cases: the connections are enabled only
if marked by the number corresponding to the case (i.e. 1 for on-line recognition, 2 for
off-line recognition, 3 for parameter training). Finally we have implemented a system test
for checking the system and a multiDSP loading facility, for transferring object files from
the RICO mass memory to a specific DSP.

3.2.2 Architecture Overview

As anticipated, RICO is centered around a VME bus and is composed of general purpose
boards (CPU, central memory and peripheral interfaces) and of boards explicitly devel-
oped in this project, which are the digital signal processor and the acquisition boards [9].
The general purpose boards are:

84 3 The Real Time Implementation of the Recognition Stage

13 12 RECOGNIZED
SPEECH " onns

RICO
SYSTEM

2 |2 . COLLECTED
STATISTICS

UTTERANCE SPEAKERS
PARAMETERS PARAMETERS

3 f]

VAX PARAMETER
TRAINING

Figure 3.2: Block diagram sketching system functions

¢ a master CPU board, using the Motorola 68020 [25] and 1 Mbyte of internal RAM,
biported also to the VME bus,

¢ a mass memory controller, which controls a hard disk and a floppy disk,
e an input/output board, for data transfer to the host and other functions,
¢ a VME/VMX biport 1 Mbyte RAM board.

The special purpose boards are:

¢ the acquisition board, whose functions can be expanded for debugging purposes by
a piggy-back board for buffering speech samples,

e three copies of digital signal processor boards, of which the first is used for features
extraction and the remaining two are used for DHMM scoring.

Local transfers are done through two VMX buses: the first allows the transfer of samples
from the acquisition to the feature extraction board, the second allows the extension of the
memory of the other two DSP boards used for verification with the VME/VMX biport
RAM. As anticipated, memories can be distinguished into local, accessed by a specific
processor, and global, addressed by all processors through the VME bus; the global area
is distributed to different boards, where they behave as biport memories. Local memories
and biport memories have been in fact implemented in DSP boards, whilst the VME/VMX
biport 1 Mbyte board is used as an expansion of DSP boards used for DHMM scoring.
The system can be expanded and configured differently for different tasks; Fig. 3.3 shows
the final hardware configuration. Figure 3.4 shows instead the principal functional blocks
required in the two-step verification: the gray area characterizes blocks implemented in the

3.2 System Overview 85

CONSOLE
FLOPPY DISK
+——* MASTER CPU RANDOM MASS MEMORY DRIVER
HOST WITH ACCESS CONTROLLER
. +| PRIVATE MEMORY MEMORY WINCHESTER
DISK DRIVER

: } i
< T 1 VME BUS 1 1 t >

ACQUISITION DSP1 DSP2A VME/VMX DSP2B
m BOARD al [VECTOR QUANTIZATION [DIPHONES BIPORT [DIPHONES
INPUT I AND CLASSIFICATION] VERIFICATION] MEMORY VERIFICATION]

i
sarEs) > < I I >

BOARD VMX LOCAL BUS (FIRST) VMX LOCAL BUS (SECOND)

Figure 3.3: Final hardware configuration

master CPU. Feature extraction is performed by the DSP1 and is composed by DCTs and
energy computation, vector quantization and classification; the hypothesization stage is
performed by the master and is composed by frame segmentation, cohort hypothesization
and diphones lattice building; discrete hidden Markov models (DHMM) verification is
composed by the diphone tree scanner, implemented in the master, and by the diphones
verification, implemented in the DSP2. In order to speed up this computation some
DSP2 can be put in parallel: in our final implementation we experimented two DSP2 in
parallel and we called them DSP2-A and DSP2-B!. This decomposition of the DHMM
verification into two levels, the less computation-intensive one on the master, and the
more computation-intensive parallelized in some fast slaves, is well suited to a real time
multiprocessor implementation. Two-level decomposition of the verification stage has
been used in all three cases for the real time implementation and is not to be confused
with the one-step and the two-step approaches. In fact the one-step approach can be
obtained from the two-step approach by completely discarding the hypothesization stage
and by scanning only the precompiled diphone tree describing all the vocabulary, instead
of traversing the on-line compiled diphone tree describing the subset of words evaluated
by the hypothesization stage. Table 3.4 summarizes the blocks used for the three real
time recognition applications implemented, with the specification of the board hosting
them; of course the system can evolve and demonstrate a further speed-up by porting
other functions from the system master to DSP boards. Off-line recognition differs from
on-line recognition in the system control that in this case activates the DSP2 only by
using prerecorded acquisition results; the acquisition function instead requires only the
parameters extraction section driven by a suitable system control, so in this case the DSP1
only is used.

1just not to confuse readers; we pointroutithat in some earlier P26 documents and papers we referred
to these DSP as DSP3-A and DSP3-B or even DSP3 and DSP4 for historical reasons. The notation used
in this document however seems more appropriate.

86 3 The Real Time Implementation of the Recognition Stage

[_FEATURES EXTRACTION

CLASSIFIER
PARAMETERS
FRAME ROUGH :
, PHONETIC —»| SEGMENTER

CLASSIFIER '
- DIPHONES TREE
AID CONVERTER g COMENER .

SEGMENTATION

SPEECH: | WITH FRAME DCT | & S St e e
] AND ENERGY HETLA T T AGE -
EVALUATION ,_ : DIPHONES TREE
. | SCANNER
d ' Y .
' DCT VECTOR | DIPHONES
AND ENERGY t D.H.M.M.
SCALAR QUANTIZER i VERIFIER '
' CODEBOOK HIDDEN MARKOV |,
MODELS J

Figure 3.4: Principal function blocks for the two steps verification

aHJLtZ_ujﬁJZ I_'I:LI

3.2 System Overview 87

SINGLE STEP TWQO STEPS SINGLE STEP |IMPLEMENTED
MAIN FUNCTIONS |ISOLATED WORDS | ISOLATED WORDS | CONT. SPEECH| IN BOARD
SYSTEM
CoNTRCL Y (1) Y (2) Y (3) MASTER
DCT AND ENERGY
EXTRACTION (°) Y Y Y DSsP 1
VECTOR
QUANTIZATION (%) Y Y Y DsP 1
FRAME
CLASSIFICATION () N Y N DsP 1
FRAME .
SEGMENTATION (*) N Y N MASTER
CCHCRS
HYPOTHESIZ. (**) N Y N MASTER
ON LINE DIPHONES
LATTICE BUILDING (**) N Y N MASTER
DIPHONE TREE
SCANNER (**") Y Y Y MASTER
DIPHONE " ;
HIDDEN MARKOV M. v Y ¥ DSP 2 @) Features extraction stage
VERIFICATION (***) o
(4] Hypothesization stage
LATTICE
FILTERING N N Y MASTER (***) Verification stage

Table 3.4: Comparison of blocks used in different subcases

3.2.3 System Control and Synchronization Methods

The system is ¢ontrolled by the 68020 master CPU, running the real time multiuser multi-
tasking operating system VERSADOS [26] and a ROM resident monitor; the DSP boards
and the acquisition system behave as intelligent system peripherals, which exchange data
and synchronizations by reading and writing VME addressable locations. The acquisi-
tion board is controlled by an internal ROM resident monitor, which decodes commands
received through the VME bus; on the other hand the DSP board exploits a PROM res-
ident kernel with selftest and loader functions only: in this way the DSP’s program and
data configuration is is totally controlled by the master CPU software. For each DSP
we have a command and status area, allocated in a predefined area of the VME biport
memory; the specific format of this area depends on the application program and in fact
it 1s different for DSP1 and for DSP2. In general the command and status area controls
these functions:

¢ the DSP program bootstrap, from a VME addressable buffer to the DSP internal
program area;

o the data bootstrap from a VME addressable buffer to a DSP internal data area,
used for loading the codebook for the DSP1 and the DHMM for the DSP2;

o theinput.and output buffers.configuration and enabling; these buffers can be in fact
enabled or disabled by suitably writing the corresponding command area; enabled
buffers can be allocated everywhere in the VME addressable area,

88 3 The Real Time Implementation of the Recognition Stage

MEMORY
M e |
:I FLAG -
=
z
- =3 (-4
E 9 E
[+ 4 [4
3 & z
f COMMON BUS
AAAi
P1 p2

Figure 3.5: Synchronisation traffic for flag addressed through a common bus only

o the DSP program control: when the programs and data are loaded and the buffers
are configured, we can start up the system by suitably writing in the command area,;
also in this case we can have some different possibilities, as for example “run forever
until stopped” (used in the real time application), or “run for a definite number of
frames” (used in the debugging).

Different boards are synchronized through flags by the busy waiting mechanism [23], in
which the processor P2 to be synchronized continuously reads the flag until it is in reset
state and then starts the following computations when it reads that the synchronizing
processor P1 has set the flag; at the same time P2 resets the flag. This is the simplest
synchronization mechanism to implement, but if the flags are not properly allocated it
could generate excessive bus traffic for synchronization purpose only, due to the burst
of flag readings: this happens for example if the flag is allocated in a memory which
is addressed through the common bus by both processors (see Fig. 3.5). In order to
avoid this problem we used VME biport memories and whenever possible we allocated
the synchronization flags in the biport memory housed in the same board of the processor
to be synchronized: in such a way the flag synchronization reading burst remains internal
to the board and does not affect the bus traffic (Fig. 3.6). Synchronization flags are used
in our system both to start up and to stop in an orderly way the different blocks, and to
validate messages between different blocks.

3.2.4 System Run-Time Evolution

As far the run-time evolution is concerned, the system can be distinguished into two
sections (Fig. 3.7):

3.2 System Overview 89

COMMON BUS

‘, A “

BIPORT MEMORY
WRITE 1
‘l FLAG

o

g

5 i
Q =
b €
4 >

P1 P2

Figure 3.6: Synchronisation traffic for flag allocated in the P2 biport memory

e a first section, composed by the DSP1, which is frame synchronous, since it is assured
that it extracts frame parameters each 10 ms,

e a second section, composed by the remaining computations, and centered on the
frame verification, which is frame asynchronous since its timing is not predictable;
as a rule of thumb beginning and ending frames of the utterance spend less time in
the verification stage than central ones.

The verification stage computational time is frame dependent since not all the diphones
are verified at each frame, but only the active ones: active diphones are those which have
at least one state above a beam search probability threshold. The verification stage is
composed by the diphone tree scanner and by the more computational intensive discrete
hidden Markov model (DHMM) verifier (Fig. 3.7). On a frame basis the diphone tree
scanner sends to the verifier through the broadcast area both the frame code vector and
the beam search threshold, then identifies the diphones whose verification has to start and
puts them in a list, called the “push list”, transmitted to the diphone verifier. This last
block performs dynamic programming on diphones in the push list and on the diphones
already active at the end of the previous frame; then updates the active diphones by
discarding those from which all the state probabilities are below the best path by a given
threshold and finally identifies the diphones reaching the final state: these are organized
in a “pop” list and sent to the diphone scanner, which from the pop list evaluates the
push list of the next frame (Fig. 3.7). We implemented two kind of sequencing between
the synchronous and the asynchronous sections: first a simpler, but less time efficient
“serialized” implementation, then a more efficient “interleaved” one, which 1s the final one
released: Figure 3.8 summarizes the frame timing in both cases. In the serialized case the
asynchronous computation on the first frame starts when the synchronous computation
on the last frame ends, whilst in the interleaved case the asynchronous computation on

90 3 The Real Time Implementation of the Recognition Stage

.7: System interplay

3.2 System Overview 91

a) "SERIALIZED"

DSP1 ¥ » - '
1 2 3 4 5 1 n
l
1
1
DSP2 L -
1 2 3 4 5 n-1 n
b) “INTERLEAVED"
DSP 1 ; + ' R -
11 21 31 41 5 n-1 von N
! 1 ! \ ! \
1 1 1 \ 1 N N
[1 1 \ \ N \
DSP2 Pt ’ 5
1 2 3 4 5 n-1 n

Figure 3.8: System timing

the first frame starts when the synchronous computation on the first frame ends and
so on. We can see also that in the serialized case all DSP2 frame computations are
performed consecutively since the input code vectors are all available from the beginning,
whilst in the interleaved case some idle time can appear in DSP2 computations, and this
happens when DSP1 has not yet finished the code vector evaluation of the next frame (see
Fig. 3.8). In every case it is obvious that the recognition delay of the system is reduced
in the interleaved case and this situation is even better when there is a balance between
the frame computational time of the DSP1 and the (average) frame computational time
of DSP2: for the continuous speech application with 1000 words we approximate this
balance by putting two DSP2 in parallel. All these considerations can be extended from
the single-step to the more involved two-step approach: in this last case we have also
to take into account the hypothesization stage (dashed block in Fig. 3.7) which changes
the diphone tree description on a phonetic segment basis?: in this last case however we
cannot oversee master computational times due to the hypothesization stage.

2 A phonetic segment typically lasts some frames (e.g. 5-10 frames).

92 3 The Real Time Implementation of the Recognition Stage

3.2.5 Details on the Asynchronous Stage Activity

We will detail now a model of the asynchronous stage activity in order to explain both its
computational load frame behavior and the criteria used in parallelizing the verification
task. Figure 3.9 shows the model of the asynchronous stage activity: each frame £ is
characterized by a number of “push” diphones Npush(t) , by a number of diphones active
already active Nactb(t) and by a total number of diphones Nver(t) which are verified
by the dynamic programming. Some of these, with the probality Pdis, becomes inactive,
and their number is Ndis(t) , the remaining instead remain active at the end of the frame,
and their number is Nacte(t) . Some of these, with probability Pop , originates the final
pop diphones, with probability Ppop . Hence in the same frame we have:

Npush(t) N Nactb(t) = Nver(t) (3.1)
Nver(t) x Pdis = Ndis(t) (3.2)
Nver(t) x (1 — Pdis) = Nacte(t) (3.3)
Nacte(t) x Ppop = Npop(t) (3.4)
whilst the frame ¢ activity is related to the frame ¢+ 1 activity by these relationships:
Nacte(t) = Nactb(t + 1) (3.5)
Npop(t) x bm = Npush(t + 1) (3.6)

bm being an average factor which summarizes the activity of the diphone scanner in
generating pushes from pops. The heavier computation of the asynchronous stage is
the dynamic programming, which is iterated Nver(t) times each frame: hence in a first
approximation we can say that Nver(t) measures the frame variable computational load
of the asynchronous stage. At frame ¢ = 1 we have that Nactb(1) = Nacte(0) = 0, hence
Nver(l) = Npush(1l) , which are the initially pushed diphones: hence the first frame
computational load is quite reduced. Then Nver(t) grows frame by frame because new
pushed diphones Npush(t) are greather than Ndis(t), i.e. disabled diphones. At the end of
the utterance instead Nver(t) decreases again, since in this phase there are many disabled
diphones Ndis(t) . Figure 3.10 summarizes the typical frame-by-frame verification time
of an utterance: its behaviour is similar to other search problems, i.e. the computational
load increases first and then decreases. In the case that the verifier is too slow for a specific
task, it can be parallelized to N different DSP2 in such a way that the computational load
is balanced between these processors: this could be achieved if each of the N parallel
verifiers performs dynamic programming on Nver(t)/ N diphones. An exact balance
would require, however, the unacceptable overhead of redistributing the active nodes on
a frame basis between the different processors: we found that an acceptable policy is
to balance the number of pushes provided by the scanner by distributing Npush(t)/ N
pushes to each verifier; hence in our implementation with two DSP2 in parallel new pushes
are alternatively sent to DSP2-A and DSP2-B. Figure 3.11 details the cooperation of the
scanner with two verifiers in parallel. Other than this we have to point out that the
scanner and the verifier run completely in parallel; this is due to the fact that the push
list entering the verifier is.organized as.a.double buffer, hence while the scanner computes
pushes for frame ¢ + 1 as soon as pops of frame ¢ are available, the verifier reads last
pushes of the frame ¢ and computes last pops.

3.2 System Overview

SCANNER

Npuszh (t)

r
{

i

i

] bm
!

¥

|I Npop {1}

|

|

VERIFIER

Naoctb (t
{> zotb @ +) rosicaLor

Nver (t)

(1-Pdis) Pdis

Nacte (1) ’ Ndis (1)

Figure 3.9: Model of subwords activation

FRAME VERIFICATION }
TIME

MAX

AVG

N PUSH (1)

FRAME

Figure 3.10: Typical verification times of an utterance

93

94

3 The Real Time Implementation of the Recognition Stage

MASTER
WORKING
AREA
DIPHONE
TREE
DESCRIPTION
DIPHONE T:EE
»J] CODEVECT {MASTER) OUTPUT
FOFg onRs - LATTICE
POPS PUSHES PUSHES BROADCAST PUSHES PUSHES POPS
BUFFER 0 BUFFER 1 AREA BUFFER 0 BUFFER 1

1

DSP2-A

DIPHONE
DESCRIPTION
AREA (DHMM)

DSP2- A

WORKING
AREA

(TJ
[

DsPa2-B

DIPHONE
DESCRIPTION
AREA (DHMM)

DSP2-B

WORKING
AREA

Figure 3.11: System interplay of the final system with two verifiers in parallel

3.3 Hardware Details 95
3.3 Hardware Detalils

3.3.1 DSP Board Description
DSP board architecture requirements

The DSP board is centered around a TMS32020 digital signal processor, driven by a 20
MHz quartz clock: this was in fact the most advanced DSP available at the beginning of
the project and moreover the DSP with the widest address range available: in fact our
application was memory intensive, especially for the algorithm of Viterbi decoding using
DHMM. Nevertheless the native addressing capability of the DSP was not enough for us,
since we wanted to completely address two 24-bit buses (VME and VMX): hence the first
problem that we faced was the extension of the DSP native address space through data
area paging. The second problem that we had to solve was to render the board easy to
reprogram, and this was achieved in the most easy and flexible way by providing the board
with a bootstrap ROM. Finally we provided the board with biport memories in order to
allow busy waiting synchronization through flags without producing bus overhead, as
already explained.

DSP board architecture details

As anticipated, the DSP used is a TMS32020 [10]; it is characterized by an address range
quite large for the category of signal processors, i.e. 64K of program and 64K of data,
of which 544 words are internal to the chip and therefore faster; these are structured
in three banks, B2 (of 32 words), B0 (of 256 words) and B1 (of 256 words too): these
areas must be used for more frequently accessed data in order to obtain the maximum
algorithm speed-up: we will detail this point later for specific algorithms. The TMS32020
interfaces to a 16-bit data bus and a 16-bit address bus, which are organized into three
different spaces, i.e. a program space, a data space and an I/O space; the data space
can be further split into private and general. In fact, according to the configuration
of the GREG [10] register internal to the DSP chip, data addresses below a threshold
address are private and above are general (in our case the threshold is 32K): when the
data general area is addressed a synchronization dialogue is also activated, in such a way
that this area can be shared with other processors too. Our DSP board is equipped with
4 banks of 8K words of memory, each of which can be configured as program memory
or internal data memory: the start address of each bank, its nature (whether RAM or
ROM, whether program or data) is jumper selectable or PLA programmable. To be
more precise, the DSP1 is configured for 16K RAM words of programs and 16K RAM
words of internal data, whilst the DSP2 is configured for 8K RAM words of programs
and 24K RAM words of internal data: these differences reflect different requirements of
the implemented algorithms. In order to be reprogrammable, the DSP board is equipped
with a kernel PROM, with selftesting and bootstrap functions, summarized in Sect. 3.1.3:
this 512-word PROM starts from address 0 of the TMS32020 and is in overlay with the
first bank of program RAM, it is automatically addressed for reading after a power-on or
a_system reset signal and deselected by issuing a suitable DSP output: from this point
on only the corresponding address of the overlay program memory bank will be accessed
and the corresponding DSP application program executed. Using the 32K words of the

96 3 The Real Time Implementation of the Recognition Stage

general data area, we can access to the following memories:
e the VMX 2-ports RAM, of 8Kwords, allocated on the same DSP board,
e a DSP external address allocated on the whole VMX bus,
o the VME 2-ports RAM, of 8Kwords, allocated on the same DSP board,
o a DSP external address allocated on the whole VME bus.

These 4 cases are distinguished by specifying the 2 most significant bits in the EXFR
register (Fig. 3.14), allocated in the TMS32020 1/0O space; other 14 bits are used to specify
the kind of VME or VMX transfer and the number of the 32K words page accessed on the
VME or VMX bus: in our system in fact we use 24 bits for addressing the VME and VMX
buses, hence we have to expand the native addressing capability of the TMS32020. Hence,
to summarize, the data RAM of a DSP board is organized in a three-level hierarchy:

o the RAM internal to the chip: this is the fastest, but of 544 words only,

o the RAM internal to the board, but external to the chip: this is of intermediate
speed and size,

o the RAM external to the board, addressable through the VME bus: this is the
slowest, but the widest in the address range.

Other than this, the DSP board contains also two specialized VLSI circuits to generate
and handle interrupts on the VME bus: the registers used for programming the functions
of these VLSI are also mapped into the DSP I/O space. In this way the DSP board can
generate and receive the seven different interrupt lines specified by the VME protocol,
however, only 3 out of the 7 received interrupts can be forwarded to a single DSP, given
that the TMS32020 accepts a maximum of 3 external interrupts: a set of jumpers defines
for a specific DSP board which of the 7 input interrupts are really handled. We point
out that we did not use interrupts in our application for simplifying the implementation.
Figure 3.12 shows the DSP board general block diagram, while Fig. 3.13 summarizes the
DSP board address map in hexadecimal notation, as always in this description.

DSP kernel

Each DSP is equipped with an identical PROMmed program kernel, with selftest and
program bootstrap functions: it is mandatory to install this PROM in order that the
DSP board work properly. Commands, results and synchronization words are exchanged
between the master and the DSP through some predefined locations of the VME biport
RAM of the corresponding DSP, allocated in the first 8 addresses of this area: of these, the
first 6 words specify parameters, while the last 2 synchronize the master and the DSP. At
system reset the kernel program automatically starts for each DSP board of the system,
since this command sets the DSP’s program counter to zero and automatically selects
the selftest and bootstrap PROM in the first program bank. The subsequent program
evolution is summarized here in pseudo-Pascal code.

3.3 Hardware Details 97

DSP TMS32020

INTERNAL BUS
3

A4

-

M

4 [/' 4
L 4

BOOTSTRAP ROM
{512 WORDS)

PROGRAM MEMORY
(AS AN EXAMPLE.
16 KWORDS RAM)

EXFR REGISTER

DATA MEMORY
(AS AN EXAMPLE.
16 KWORDS RAM)

2y] < ‘ _ > [za]
A A 4

N 4

\ 4

mF,U%%S?ﬁg';T VME BIPORT RaM | | vMx BIPORT RaM
HANOL ING (8 KWORDS) (8 KWORDS)
A lt [
Y) J \ R N 1] L 2N
< > C »
TO/FROM EXTERNAL VMX BUS

TO/FROM EXTERNAL VME BUS

Figure 3.12: DSP board general block diagram

98

PROGRAM SPACE

DATA SPACE

3 The Real Time Implementation of the Recognition Stage

ADDRESSES

A

0000

BOOTSTRAP ROM OR
ON BOARD RAM (BANK 1)

CHIP RAM AREA
(Addresses 0-5 system defined
addresses 60 - 7F user defined)

OR NOT USED

0200

A

ON BOARD RAM (BANK 1)

CHIP RAM AREA

NOT USED

ON BOARD RAM (BANK 2)
(ONLY FOR DSP 1)

ON BOARD RAM (BANK 2)
(ONLY FOR DSP 2)

ON BOARD RAM (BANK 3)

ON BOARD RAM (BANK 4)

BIPORT MEMORY DSPDPE or
BIPORT MEMORY DSPDPX or
VME ADDRESS SPACE or
VME ADDRESS SPACE
according to the EXFR

-« (0400

«— 2000

-« 4000

-««—— 6000

-« 8000

«— FFFF

{/0 SPACE

8 status/command registers of the

interrupt controller

EXFR register

2 status/command registers of the

interrupt generator

not used

disables PROM kernel when accessed

- 0

-— 7

Figure 3.13: Address map of a DSP (hexadecimal addresses)

3.3 Hardware Details 99

VXM biport area
15 0
Lofol x| x x| x x| x P x]x x| x{x[x|x]x]

VXM bus
15 0
f o] v Jaafaxo] x | x| x| x [a23[a22]a21[Aa20[Aa19] a18]A17]A16]

VME biport area

15 0
Lrlolxfxfxfxfxfxfxfx]xfx]x]x]x]x]
VME bus

15 0
[1] 1 [ams[ama]ams]amz] ami|amo] a23] a22] a21{a20[A19] A18[A17] A16]

Figure 3.14: Configurations of the EXFR register

100 3 The Real Time Implementation of the Recognition Stage

DSP board initializations;
first master/dsp synchronization;
if tests are required then
repeat
master/dsp synchronization
to validate test parameters;
case test of
data test: perform data buffer area test
and obtain diagnostics;
program test: perform program data buffer area test
and obtain diagnostics;
program to data: transfer a buffer from a
program to a data memory;
data to program: transfer a buffer from a
data to a program memory;
if the test is not ok then stop;
until no new test is required;
endif;
master/dsp synchronization to validate program bootstrap parameters;
if program boostrap is required do it;
switch the first program memory bank from PROM to RAM and
jump to the program address 200.

From this description, we see that the kernel loops in the first synchronization phase
until an appropriate data interchange occurs with the master; it is hence possible to skip
completely the test phase or to enter a test loop. Four test functions are available: a test
on a data buffer area, a test on a program buffer area, a buffer transfer from a program to
a data area or vice versa: these two last functions are not really test programs, but can be
useful in a system test environment. Before each test the master writes in the VME biport
area of the DSP the buffer starting address and the buffer length: it is hence possible to
test every VME or VMX addressable area, since in the starting address we define also the
EXFR register configuration. In case of fault, the program is stopped automatically and
the DSP writes diagnostic information in the VME biport area arranged in two words, of
which the first codes the first memory address in fault and the second codes the bit(s) in
fault. The following program bootstrap phase transfers a buffer area from a global data
area addressable through the VME bus to the DSP program space; in a previous phase the
object programs have been transferred from the mass memory to the VME addressable
data space. At the end the kernel program jumps to the fixed program location 200,
after having switched the first program bank from this PROM to the RAM by issuing
an output at address F; in order to be compatible with the kernel the DSP application
programs must start from location 200, with addresses from 200 to 220 filled with a jump
table. Since the PROM content cannot be accessed any more, if we want use again the
selftest and bootstrap functions after the PROM deselection, we must have a kernel copy
in the corresponding program RAM area, which is accessed in the case of a DSP local
reset command.

3.3 Hardware Details 101

3.3.2 Acquisition Board Description
Acquisition board requirements

In the implementation of the acquisition board we faced with two problems: the former
is the simplification of the samples transfer to the following DSP board, the second one is
the simplification of running experiments from prerecorded sample files. The easier way
to transfer samples from the converter to the DSP board is to use a private bus (the VMX
one) and to equip the converter board with a FIFO of adequate size. In this architecture
the synchronization between the converter and the DSP board is obtained implicitly by
using the VMX protocol characteristics, if the processing time of a frame in the DSP
is faster than a time frame. For running experiments from prerecorded sample files the
acquisition system has been equipped with a large samples memory (1 Mword) whose
samples can feed the DSP board as an alternative to being supplied by the converter:
this samples memory is mounted on a piggy-back board; hence the complete acquisition
system consists really of two boards.

Acquisition boards architecture details

The acquisition section block diagram is shown in Fig. 3.15; it has been implemented in
two boards, although only one board is enough for a minimal functionality excluding the
use of samples memory. The data conversion path begins with the microphone, followed
by an amplifier whose gain can be programmed through a command issued by the VME
bus; the amplifier output is sent out to a 6 kHz low pass filter, which limits the input
signal bandwidth; the following stage then digitizes the analog signal with a 12 bits
accuracy and a 12 kHz sampling rate, which is enough for our application; however higher
sampling rates (24 kHz and 48 kHz) can be chosen by a suitable jumper setting. Several
functional modes can be set by suitable commands on the VME bus: they are read by a
monitor program resident on this board, which is under control of a local CPU. Among
these, the most frequently used is the normal acquisition: samples are sent to a pair
of parallel FIFOs, of 1K words each, which can be independently read at two different
addresses of the VMX bus: this gives the possibility of decomposing parameters extraction
algorithms in two boards running in parallel, achieving real time also for more demanding
computations than presently implemented *. A FIFO overrun can be notified through
interrupts and flags, and this happens if DSP1 frame computational time is slower than
10 ms: a DSP1 program implementation of this kind is incorrect from the point of view of
real time. A correct DSP1 program in fact performs frame computations faster than the
10 ms frame time, reading the FIFO at a faster speed than A/D writes it; hence for some
read instructions it happens that no new sample is immediately available: in this case the
VMX bus access is frozen while the read instruction of the DSP idles until a new sample
is available: this is the “trick” used by the DSP1 application program for synchronizing
with the acquisition system. As mentioned before, the converter board provides also other
functional modes; generally these modes use the piggy-back samples memory, which has
a maximum size of 1 Mword and can store up to 80 seconds of speech with a sampling

3lmthisrimplementationjonly;onesDSPsboard for feature extraction was enough, but the possibility of
using two DSP boards in parallel can be taken into account for future system expansions, as for example
larger codebook or multicodebook implementations.

102 3 The Real Time Implementation of the Recognition Stage

TO VMX BUS

I

speecH | PROGRAMMABLE INPUT FILTER FIFO 1 (1KWORD)
— GAIN > AND A/0 AND
AMPLIFIER CONVERTER FIFO 2 (1KWORD)

A
A4

INTERNAL BUS \

A
\ R

- ‘ >
r y_
] PIGGY TEST i
| BACK MEMORY | ggg;?gh
IsecTron] (1 MWorD) | |}
b o S 3
N Y 4 R
% S

TO/FROM VME BUS

Figure 3.15: Converter block diagram

Byte addresses Controlled function Function type
2 VMEbus — samples memory save-restore
4 samples memory — VMEbus save-restore
10 gain control standard
12 status word standard
18 A /D — samples memory delayed test
1A samples memory — FIFO (many) | delayed test
1C samples memory — FIFO (once) | delayed test
1E FIFO control standard

Table 3.5: Locations of the acquisition board window

frequency of 12 kHz. As a first example, for testing a DSP real time-algorithm for a
predefined digital sequence, we can do the following steps: load the test data memory
from the host computer via the VME bus, switch the internal bus from the converter to
the test data memory and read the test data memory contents through the VMX bus for
a definite number of iterations or even continuously. As a second example, when we want
to test off-line a high-level implementation of the algorithms with the data generated by
thesrealshardware;the digitized,datascan be stored in real time in the test data memory,

3.3 Hardware Details 103

whose contents can be subsequent transferred to the host computer via the VME-bus. It
has also to be mentioned that this memory was also added for the case that recognition
algorithms could require the further refinement of parameters extraction for some sections
of speech input: however, this possibility has not been used by the algorithms actually
implemented in this project.

Acquisition functions

The acquisition system functions can be distinguished into three sets:
¢ minimal standard functions,
o delayed test,
® save-restore.

These functions are selected by properly addressing the 32-byte window allocated for the
acquisition board in the VME bus: each address controls a different function, as summa-
rized in Table 3.5; some of these functions require only one word, while others require a
sequence of words to define completely the operation to perform. Minimal standard func-
tions allow to set first the analog input gain, then to set the board configuration through
the FIFO control command word: on the basis of this command word it is possible to
enable the samples acquisition on the two output FIFO and, independently, to enable
or not the interrupt corresponding to the two FIFO full conditions; if interrupt is not
enabled, this condition can be tested by reading the status word. All standard functions
require only one word to be defined. In every case, after writing the FIFO control word,
the samples acquisition in the FIFO starts automatically. Delayed test allows to fill the
samples memory in a controlled way, using the address 18 of the window, then to present
these samples to the FIFO several times or only once, using respectively addresses 1A or
1C of the window. These functions require a time-ordered protocol of parameters written
through the VME bus on the same address, since we have to specify the first and last
address of the samples buffer and in one case also the number of repetitions. With these
delayed test functions it is possible to verify an algorithm repeatedly with the same sam-
ples input: in the case that we want save these samples for a new session we have to use
the save-restore functions. These functions allow to save a predefined samples area in the
VME bus area or to restore this samples area from the VME bus area; in this case two
steps are to be followed: first a time-ordered protocol of parameters written through the
VME bus allows the definition of the samples area, then VME buffer reading or writing
allows the transfer of these samples from/to every VME buffer area, under master control.

3.3.3 System Configuration

The VME bus used is a well established bus, first adopted by Motorola and then stan-
dardized as IEEE P-1014 [14]: it allows a maximum transfer rate of 40 Mbytes/s on a
20.slots;cabinetrand cansbe configured-for transfers of 32 bits of data maximum on a 32
bits address space maximum, although in our configuration we used 16 bits of data on

104 3 The Real Time Implementation of the Recognition Stage

24 bits of address space only. Although a debate exists whether an asynchronous or a
synchronous bus is better [16, 17], we think that an asynchronous bus like the VME is
appropriate when interfacing with processors of different families, as in this case. Being a
high-performance bus [15], the VME bus is provided with an arbiter, which controls the
dynamic change of the bus mastership: take care to distinguish the bus master, which
is a hardware dynamic concept, from the system master, which is the CPU driving the
operating system, hence in our case a softfware static concept. In our system the arbiter
is resident on the Motorola CPU; this is configured as a single level arbiter in order to
simplify the implementation. Both the master and the DSP boards can become VME
bus masters by suitably issuing bus requests: however the Motorola CPU board is con-
figured for a Release on Request (ROR) behavior, that is, it takes control of the bus by
default unless some other board wants it; the DSPs instead are configured for a Release
When Done (RWD) behaviour, that is, they take control of the VME bus only when they
really want access it: this is due to the fact that the master is the most likely board
to access the bus. The system could evolve to a distributed interrupt one, since each
DSP board, the converter board and the master CPU can send interrupts, and both the
master CPU and the DSP boards can process incoming interrupts. However, in order
to simplify the firmware implementation, all synchronizations are handled through flags,
without using any interrupt at all. In each board there is some internal memory and
some externally addressable memory; these last together constitute a distributed global
area, addressed through the VME bus, whose map in hexadecimal bytes notation is shown
in Fig. 3.16; the global area is also internally addressable from some board, hence it is
biported. This architecture allows both efficiency, by quickly accessing internal memories
for programs and data not shared between different boards, and ease of interaction be-
tween different boards, by using distributed global area for storing data to transmit or
to share between different boards. For local data exchanges two secondary VMX buses
[18] are used: the VMX bus allows a maximum of 2 masters, one primary (that is, ROR)
and the other secondary (that is, RWD) and this is the configuration used by the VMX
connecting the DSP2-A (primary master) and the DSP2-B (secondary master) with the
VME/VMX biport memory; the VMX connecting the DSP1 with the acquisition board
has only one master, the DSP1. In the implemented application the DSP DPX biport
memories, although allocated in the map, are never addressed from the bus; the converter
FIFO location addressed is of course only the topmost location, which can be read at all
addresses reserved on the VMX map for the FIFO. After the reading of this data, the
next sample becomes the new topmost FIFO location.

3.4 Firmware Blocks Details 105

FUNCTION ADDRESSES
_ - 000000
RAM on board of the master CPU
SPARE AREA
- 400000
BIPORT DSP MEMORY DPE (DSP1)
3 404000
SPARE AREA
- 500000

| BIPORT DSP MEMORY DPE (DSP2/A)

- 504000
SPARE AREA

- 580000
BIPORT DSP MEMORY DPE (DSP2/B)

~— 584000

SPARE AREA
-« 600000
VME/VMX BIPORT MEMORY DSSEPDX
(1 Mbytes)
- 700000
ACQUISITION BOARD REGISTERS
-« 7000200
SPARE AREA
€ FF8000
SYSTEM RESERVED AREAS
(mass memory controller,
input/output system)
€ FFFFFF

Figure 3.16: VME Addess map (hexadecimal bytes)

3.4 Firmware Blocks Details

3.4.1 Feature Extraction

Generalities

The feature extraction firmware is executed by the DSP1 and performs in each 10 msec
time frame all computations from samples acquisition to spectrum vector quantization
and-rough-classification-into.6.broad phonetic classes. We were faced with the problem of
implementing the firmware both accurately and quickly: this has been obtained even at the
expense of some increase of memory, which is not a scarce resource in our implementation.

106 3 The Real Time Implementation of the Recognition Stage

We added flexibility by using a suitable control area, which is configured according to the
algorithm alternatives. Here the DSP1 application program is summarized in pseudo-
code.

DSP1 board initializations;
DSP1 fixed tables initializations;
if the master wants to perform the data bootstrap for
application dependent tables, do it;
frame counter=0;
repeat
repeat
acquisition of the first samples frame;
until the master wants to start;
scale the samples framse;
window the samples frame;
evaluate FFT on the samples frame;
group FFT into articulatory bands;
evaluate bands logarithm;
evaluate cepstral coefficients;
evaluate the logarithm of the frame energy;
if the master enables phonetic classification, do it;
if the master enables frame vector quantization, do it;
increment the frame counter;
acquisition of new samples of the frame;
until the master blocks unconditionally this evolution or a
maximum number of frames has been reached and a conditional
stop was previously set by the master.

At the beginning the DSP1 application program initializes both the constant tables, for
example the trigonometric constants used for FFT, and the application dependent tables,
for example the codebook used for the spectral vector quantization and the coefficients
used for the phonetic classification: by changing these tables it is possible to adapt the
system to different speakers and michrophones. At system start-up these tables are all
transferred to the DSP internal data area; constant tables are transferred from the DSP
program area, where they have been previously compiled, while application-dependent
tables are transferred from the global data area, where they have been previously loaded
from the mass memory. Frame computations are performed in pipeline, so that the output
of a computation is the input of the following one; these data are generally exchanged
through a common pipeline area allocated in the TMS32020 internal fast block BO: this
way the maximum efficiency is achieved since no data transfers are required from one
routine to another; besides, the pipeline area is located in the fastest RAM area of the
DSP memory hierarchy (Fig. 3.17). Scalar results (such as spectral code vector and
energy code) or results used by different computations and not contiguous in the pipeline
(such as frame energy) are stored as global symbols in the short fast block B2; fast block
B1 is used instead for constants and intermediate results in some computations (FFT,
frame classification). The DSP1 control table allocated in the VME biport area of the

3.4 Firmware Blocks Details 107

.INTERNAL WORK INTERNAL WORK
CONSTANTS AREA CONSTANTS
w
Z y 2 w ¥

" § s 3 g e ==z =z
t# 1 5d w =1 £ g 5
—p g% — gg-v RE=p FE ->§¥- - = > EEp £ E -ﬁgg

I < - -
- - 5z e az 2T & a2z
—_— g S 3 - téU 8o 'é o

SAMPLES o -
FOR VIMX)
Y Y
ALGORITM PIPELINE AREA (BANK 0)
AND COMMON AREA (BANK 2)
I
GENERAL INPUT L . INPUT CONTROL | | oUTPUT CONTROL |._..... »] GENERAL OUTPUT
ROUTINE PARAMETERS PARAMETERS ROUTINE
VME
VME ml .

sl - Designates algorithm sequences
———>» : Designates data transfers

---.--3 :Designates parameters controllery program activations

Figure 3.17: DSP1 application firmware architecture

ol 4 JI_I.LI

108 3 The Real Time Implementation of the Recognition Stage

INPUTS

— - - — -l

COMPUTATION
3
e
y
COMPUTATION

\

|

|

|

n

|
AN

-1

2

>

/
\
COMPUTATION

COMPUTATION
1
A
COMPUTATION
N

Y
|
|
[
[
l

\

i

i

|

!

|

\

- - —- = = -
- — | — - -~
4_—_—-’~

OUTPUTS

Figure 3.18: Pipelined algorithm with generalized inputs and outputs

DSP controls the algorithm evolution, the results display and the parameters input in
it: in fact, by suitably setting this area, it is possible to enable or disable sections of the
algorithm and to enable or disable the transfer of intermediate results from the common
results area to predefined external VME areas arranged as circular buffers and vice versa.
The program normally reads samples from the VMX bus, but, by suitably configuring the
DSP1 control table, it is also possible to select the input from the VME bus for executing
off-line experiments from files . The only difference between the general input and the
general output is that several kinds of output can be enabled at the same time, getting
valid results on different sections of the pipeline, while only the last enabled input of the
pipeline is valid, as visualized in Fig. 3.18.

DSP1 control details

The VME biport area of the DSP contains the DSP1 control block, which can be fur-
ther distinguished into the general control block and the input/output control block.

The general control block controls the algorithm evolution, mainly using the COM-
MAND/STATUS WORD: by properly writing it, it is possible to start and stop the

*This generalisation has been implemented after the end of the Esprit P26 project. In the DSP1 pro-
gram released for the P26 project it was possible to input only DCTs and energies for vector quantization
and coarse phonetic classification of the frame.

3.4 Firmware Blocks Details 109

Channel number Logical channel Comments
0 input samples display (256 words of B0)
1 normalized input samples (256 words of B0)
2 normalized and windowed samples | (256 words of B0)
3 FFT results display (256 w. BO, 2 w. B1)
4 band grouping results display (36 words of B0)
5 band grouping logarithms (36 words of BO)
6 frame energy and DCT’s (2 w. B2, 34 w. B0)
7 spectral and energetic symbols (2 words of B2)
8 frame energy (2 words of B2)
9 classifier. results display (2 w. B2,4 w. B0)
10 partial time duration (8 words)

Table 3.6: Summary of DSP1 output channels

DSP1 computations. Stops can be unconditional or programmed: this last case happens
when the present FRAME COUNTER reaches the predefined MAXIMUM NUMBER OF
FRAMES. 1t is also possible to configure the COMMAND/STATUS WORD in such a way
as to completely discard a subsection of the algorithm, for example phonetic classification.
When a stop condition is met, the DSP writes suitable bits of the COMMAND/STATUS
WORD, and hence the master can be synchronized with this stop by reading it. The
output control block is partitioned into several channel areas, each of which controls the
output of a specific channel. In this way it is possible to disable or enable the automatic
enqueuing of intermediate internal results into VME circular buffers, whose allocation
has been previously defined. In order to obtain this flexible output behaviour, we imple-
mented a general purpose output routine, called by the DSP1 main program at points
where frame results are available. This routine needs three parameters:

o the start address of the internal data to transfer to the output channel,
o the number of data to transfer,
¢ the physical number of the output channel.

Table 3.6 summarizes the correspondence between physical and logical channels. The
channel number is associated with specific control and status words in the corresponding
area of the output control block: the master enables or disables specific output channels by
suitably writing the corresponding channel control word. Other than this for each channel
the START VME ADDRESS and the END VME ADDRESS define the allocation.of the
output circular buffer, whilst the VME POINTER defines the address of the last written
word; of course the master initially sets VME POINTER=START VME ADDRESS, then
this pointer is automatically updated by the DSP1 each time the specific channel output
transmits a new block of results. Other words in the output control block defines a limit
address: when the VME POINTER overcomes it, a message is sent to the master through
interrupts or flags: to be more precise there are two limit addresses, hence two overflow
indicators: the green alarm (i.e. warning message) and the red alarm (i.e. unrecoverable

110 3 The Real Time Implementation of the Recognition Stage

error). Other words in the channel control block enable or disable interrupts or flags for
the green and red alarms independently and specify respectively the interrupt number
or the VME address of the flag. If the alarm condition is met and this condition is
transmitted through a flag, the output program sets the VME address specified in the
corresponding output control section: it is appropriate that the flag is allocated in the
VME biport area of the receiving board for reducing the bus traffic. The output routine
is summarized here in pseudo-code; the input routine is similar.

if the output channel is not enabled
then exit;
else (output channel enabled)
if the new results buffer lenght plus the old buffer
occupancy overflows the read alarm occupancy threshold
then
if the exception has to be
notified through flags
then
sets the red alarm flag at the VME address
specified by the RED ALARM INFORMATION;
else (exception notification through interrupts)
programs the DSP board interrupt registers
with data specified by the
RED ALARM INFORMATION;
exit
else (no overflow of read alarm occupancy threshold)
enqueues the new buffer to old results;
updates the buffer occupancy;
updates the buffer pointer;
if the new buffer occupancy does not overflows
the green alarm threshold
then exit;
else (green alarm threshold overflow)
if the exception has to be notified through flags
then
set the green alarm flag at the
VME address specified by the
GREEN ALARM INFORMATION;
else (notification through interrupts)
programs the DSP board interrupt
registers with data specified by
the GREEN ALARM INFORMATION;
exit.

The clear separation of input and output routines has also been useful in the program de-
velopment. with the simulator, since the simulator implements input and output from/to
files differently than the hardware (i.e. through I/0O instructions instead of through mem-
ory instructions): hence we confined [in the input/output routine the differences between

3.4 Firmware Blocks Details 111

the real time version and the program version to be used with the simulator.

DSP1 algorithm details

The DSP1 algorithms have been implemented in such a way as to optimize both the
computational speed and the accuracy. Computational speed has been achieved also at
the expense of memory occupancy, given that the memory is not a scarce resource in our
DSP board: in fact some routines have been straight line coded, other instead have been
implemented through table look-up. As a result the programs are allocated in the first
16K words of the address space and the data are allocated in the second 16K words: hence
the DSP1 board must be configured with the first 2 RAM banks of program and the last 2
RAM banks of data. Accuracy has been achieved by properly scaling intermediate results,
hence performing a sort of block floating point, which is simplified by the availability of the
efficient NORM instruction of the TMS32020: when comparing the quantization results of
the floating point simulation with results of this TMS32020 integer implementation for a
10 000 frames speech data base, we found a difference in 0.56% of frames for spectral and in
0.03% of frames for energetic symbols [30]. Most of the time spent by DSP1 was in FFT
computation and in spectral vector quantization: hence these were the computations
to optimize in speed. The FFT computation has been improved both in speed and in
accuracy by suitable implementation choices: speed has been obtained by conmsidering
that the 256 real point FFT is related to the 128 complex point FFT, whose real part is
composed of even samples and imaginary part is composed of odd samples of the first 256
real point FFT [32], accuracy has been obtained by structuring the 128 point FFT into a
first radix-2 decimation in frequency (dif) stage and 3 radix-4 dif stages [30, 33, 34, 35].
The vector quantization routine is also time consuming, since for each code vector Yk we
have to calculate the Euclidean distance of it from the measured input X, that is,

N
NCORFO (37)
=1
hence for Ncod code vectors, each of which represented by Npar parameters we have to
compute Ncodx Npar differences: each difference has to be squared and orderly cumulated
into different Ncod sums: hence, given that square and add can be implemented in the
same DSP instruction, we have to perform 2 x Ncod x Npar instructions by frame: if
Ncod = 28 and Npar = 2* we have to do 2! = 8 K operations per frame, hence 800K
operations per second. This computation however can be rearranged as [38]:

Zw(z + z:y(z)2 -2 x Z) x y(3) (3.8)

i=1

and this reduces computations, since the first term is computed once on the frame for
all the code vectors, the second one is prestored, since it depends only on the symbol,
and the third halves the number of computations required in comparison to the original
formulation. The DSP1 computational time depends on the system initialization, that
is;-on-the number. of output.channels enabled: this is quite negligible in the normal
case activated for on-line recognition, when only output channels 7 and 9 are enabled,
but it becomes important in the case of more extensive diagnostic displays. The DSP1

112 3 The Real Time Implementation of the Recognition Stage

Routine Number of Program Constants Coding
name cycles {words) (words) style
MAIN 300 320 * L
INPUT 411 30 * L

NORMA(1) 2885 40 * L

HAMMI 2360 40 256 L

FTT's first 1912 120 124 LO
stage

NORMA(2) 2885 see NORMA (1) * L

FTT's other 2756" 2 1560 * S,
stages

MIXREV 761 766 * S

12870256 3310 62 124 L.O
NORMA(3) 2885 see NORMA (1) * L
BANGROUP 1884 1518 * St
LOGARI 1066 44 1024 LD
DCT 2562 42 324 L
VECQUA 9286 94 2176+256 L/S
VECENE 83 30 | L

Table 3.7: Summary of time and memory occupancy of DSP1 routines

computational time depends also from the spectral codebook dimensions and from the
phonetic classifier complexity, which affects computational times of the corresponding
routines; ordinarily we use for vector quantization 13 cepstral coefficients for 256 point
code vectors and 10 coeficients in the frame classification, reaching always the real time:
for larger codebook sizes, for example 512 points, the DSP1 alone can no longer keep up
with real time 5. Just to give an idea of the computational requirements, Table 3.7 gives
the results obtained in the case that the phonetic classification is excluded and that the
codebook size is of 128 symbols for 17 DCTs each. This table summarizes the number
of 200 ns machine cycles spent in each computation, the program memory words used,
the constant memory words used. A last column in the table reports eventual comments:
L means looped coding style, S means straight-line coding style, I means that we used
immediate constants, O means that a constant table has been allocated on the chip, D
means data dependent routine: in this last case the number of cycles reported in the table
represents an average value. From this table we can see also that in this case the program
and data memory occupancy is not too high and the real time requirement has been meet,
since the manipulations on a 10 ms time frame require less than 50K cycles (with a cycle
time of 200 ns).

5In this case the feature extraction task must be restructured; it could be carried out by two DSP1 in
parallel, for example.

3.4 Firmware Blocks Details 113

3.4.2 Segmentation and Lexical Access

The segmentation and lexical access firmware is used only in the two-step approach, for
quickly preselecting a subset of the whole vocabulary, named cohort, to be verified in
more detail; both are presently implemented in the master Motorola CPU in Pascal lan-
guage [28]. Segmentation and lexical access firmware is only cursory described in this
section; for a more detailed description see Chap. 2. The segmentation program merges
consecutive frames with “similar” phonetic labels to single segments; these phonetically
labelled segments are then used by the lexical access for identifying the most likely subset
of words. Just to summarize, the segmentation program receives from the DSP1 in a
suitable VME-addressable area the first and the second phonetic frame hypotheses and
the corresponding scores, and groups frames into phonetic segments. These are organized
into a graph structure, in a process called “micro-segmentation”: each arch of this graph
is a “micro-segment”, characterized by the initial and the final frame and by the first
and the second phonetic hypothesis with their corresponding scores. Then the lexical
access program finds the best match among all paths of the microsegmentation graph
and all paths in the vocabulary word-tree; the nodes associated with a set of words of
the vocabulary are called terminal nodes. To match a speech segmentation against the
phonetic transcription of the vocabulary words a modified Dynamic Programming proce-
dure is used, named 3DP [36]: it relies upon statistical models accounting for deletion,
substitution and insertion errors of the segmentation step; a beam search strategy is used
to reduce the number of active paths. The lexical access output is the set of words asso-
ciated with the active terminal nodes when all input micro-segments are processed: this
output will be used by the verification module as its input lexicon, reduced by an order
of magnitude compared to the original vocabulary. The segmentation and lexical access
firmware requires also the definition of some heuristic parameters, for example the num-
ber of frames used by majority voting filters (called windows), the threshold of rejection
and the threshold of certainty used by the 3DP lexical access; these parameters can be
adjusted by using the off-line evaluation program.

3.4.3 Markov Verifier Firmware
Generalities

As anticipated in Sect. 3.2.4, the search stage implemented is split into two levels both in
the algorithm and in the data structures. The high level in fact describes the set of words
under verification as a tree of diphone-like subword units, the low level instead describes
these subwords as Discrete Hidden Markov Models (DHMM): Fig. 3.19 summarizes this.
The high level algorithm (scanner) drives the search into its diphones tree of the word
that best matches with the input utterance relying on the pattern matching performed
by the low level algorithm (verifier). With this kind of partition the scanner is devoted
to the more irregular, but less computation-intensive task, while the verifier is devoted
to the more computation-intensive, but also regular task: in fact dynamic programming
inside diphones representations can also be arranged in a vector form. Given the different
characteristics.of the scanner.and of the verifier, we found it appropriate to implement
the scanner in a general purpose CPU and the verifier in DSP technology, faster and well
suited to vector computations. We also faced, of course, some earlier DSP limits in the

114 3 The Real Time Implementation of the Recognition Stage

O-3-0

MARKOV MODEL

Figure 3.19: Example of the two level vocabulary description

verifier stage implementation, mainly computational accuracy and memory addressabil-
ity. As far as accuracy is concerned, since no floating point was available for our DSP
technology, we implemented the Viterbi algorithm only ® by using logarithms of probabil-
ities: this replaces multiplications with additions and, what is more important, makes the
dynamic range more suitable to the integer arithmetic. As far as memory addressability
is concerned, the main problem was due to the huge space required by the spectral code
vector emission matrix B, whose dimensions are given by the product of the number of
states with the number of code vectors. Just to give an idea of its dimensions, we can
assume a number of states equal to 2° and a number of codevectors equal to 2° : in this
case the B matrix requires 2'7 = 128 K words of data memory, which is twice the maxi-
mum addressable data memory of the DSP we used! Hence it is evident why we used the
page register EXFR for extending the DSP board addressability; besides, we were forced
to use an external general purpose RAM board in order to allocate the B matrix at least:
in fact memory requirements for the DHMM verifier were so different that for parameters
extraction we did not consider the possibility to add this extension on the same DSP
board. Special care was taken to optimize the verifier speed: besides extensively using
in-line coding we adopted suitably reduced DHMM. The three classes of diphones used,
the silence, the stationary and the transitional ones, are described by DHMMs of 1,3 and
4 states respectively: their “complete” models will consider all transitions from the state
i to the states i, i+1 and i+2, as detailed in Fig. 3.20. These complete models have been
reduced by completely omitting the transitions whose probability are ordinarily very low
when, we use the complete models in the training: the reduced models (see Fig. 3.20a)

5The forward algorithm was not implemented since it is most suitable to a floating point DSP.

3.4 Firmware Blocks Details 115

OO =

(=)

SOS0570
AR~
=

a) b)

(<))

Figure 3.20: Subword unit DHMM structures used: “reduced” (a) and “complete” (b)

minimize recognition time but of course if used in the recognition they must be used also
in the previous training phase by forcing the omitted transitions to 0. In the following
we will detail the specific algorithm choices and data organization and placement in the
verifier.

Verification stage details

The master-slave interplay is organized as anticipated in Fig. 3.7 [45]: frame-by-frame
spectral and energetic codes computed by the DSP1 are broadcast from the master to all
the slaves through their BROADCAST AREA; the master informs also the specific slave
of the new nodes it must activate in this frame through the PUSHES MAILBOX AREA.
At this point the slaves advance by one frame the dynamic programming over all the ac-
tive nodes, taking into account the previous frame probabilities stored in the WORKING
ARFA and the constants in the SUBWORDS DESCRIPTION AREA, where for each
subword the transition matrix A, the spectral emission matrix B and the energetic emis-
sion matrix C of the corresponding DHMM are stored. As a result the probabilities of the
states of active nodes contained in the SLAVE WORKING ARFEA are updated; unlikely
nodes become inactive. Then each slave notifies to the master through the POPS MAIL-
BOX ARFEA information the master evaluates again the PUSHES MAILBOX AREA for
the next frame and the computation can be iterated for the next frame. The memory on
the DSP2 board uses the first board internal RAM bank for programs and the remaining
3 for data and uses an external expansion the VME/VMX biport memory. Hence six
kinds of data RAM are available:

e 544 words of on-chip data RAM,
o 24K words of board internal data, RAM (named PRIVATE in the following),
o 8K words of data RAM, biported with the VME bus (named DPE in the following),

116 3 The Real Time Implementation of the Recognition Stage

o 8K words of data RAM, biported with the VMX bus (named DPX in the following:
it can be used as an extension of the PRIVATE memory only),

¢ 1M byte of external data RAM, addressable through the VMX bus (named VME/VMX
in the following);

¢ any other VME addressable system memory resource.

The PRIVATE memory is the fastest, hence its preferred use is for frequently accessed
and updated data, the DPE memory is suitable for data addressed both by the master
and the slave, the VME/VMX is the slower, but wider RAM area, where large data tables
can be stored. The access to memories on the VME bus should be limited as much as
possible to relieve the system bus. In these RAMs we have allocated the data structures
detailed in the following:

o the transition matrix A, the spectral emission matrix B and the energetic emission
matrix C of the DHMM and the directory TDIR of the DHMM, storing for each
diphone the number of its states and the entry point into A,B,C structures: these

tables constitute toghether the SUBWORDS DESCRIPTION AREA,;

e the BROAD area where the master puts the frame spectral and energetic codes,
the beam-search threshold and the best path distance found at the last frame: this
value is used to scale down all the distances, that otherwise would monotonically
increase;

¢ the input mailbox area MAILIN, that contains the number NPUSH of frame pushes
and the relative NPUSH 4-word records (node identity, cumulated distance and
backpointer of the started path, plus a spare location);

¢ the output mailbox area MAILOU, that contains the best distance found among all
its paths, the number NPOP of frame pops and the relative NPOP 4 word records
(with the same fields of push records);

o the MAP area, where at the beginning of every frame the node identity is put in
correspondence with the corresponding input push, for a quick retrieval during the
algorithm execution;

e the XCOD area, which associates with the node identity the corresponding diphone;

o the PAGES area, which is divided into 8-word pages for the storage of the informa-
tions on active nodes only: of these the first 6 contains the backpointers and the
distances of the corresponding subword state, the last two respectively contain the
node identity and the pointer to the next active page (Fig. 3.21);

o the STACK area, which is a stack of pointers to the free pages in the PAGES area:
the PAGES and the STACK area toghether constitute the SLAVE WORKING
ARFA.

3.4 Firmware Blocks Details 117

CONTENT ADDRESSES

Backpointer (state 2) | «—— 0

Score (state 2) | =— 1

Backpointer (state 1) | «— 2

Score (state 1) | «=— 3

Backpointer (state 0) | -— 4

Score (state) | €< 3

Node - 6

Link to the next page | €— 7

Figure 3.21: Format of a page in the PAGES area

As far as the PAGES area is concerned, we implemented it as a linked list of fixed length
pages containing the informations on active nodes: the allocation and deallocation of
pages is simplified both by the pages’ linked structure and by the stack of free pages.
This solution greatly reduces PAGES memory requirements, because we have to size this
area for the maximum number of active nodes per frame only and not for the total number
of nodes. Two other PAGES area organizations have been examined and discarded for this
implementation: the static organization and the cyclic one [7]. The static organization
(PAGES area sized on the total number of nodes) would simplify the algorithm, but would
require a much larger PAGES area, which could find room only in the slower VME/VMX
RAM extension, with a clear slowdown of the overall algorithm; the cyclic organization
described in [8], in order to be effective in computational speed-up, would require a cyclic
addressing mode, not available in the chosen DSP. In Table 3.8 we summarize these data
structures, identifying for each the function and the size, which depends on the following
parameters:

e NMOD: total of different subwords,

NSTA: states of models in total (including the “dummy” final states),

NCOD: symbols of vector quantization,

NENE: quantization levels for the energy,

NTRA: allowed transitions to a state from previous states,

118

3 The Real Time Implementation of the Recognition Stage

Table Function Size (words)|Typical size and allocation
A DESCRIPTION NTRA * NSTA 2372 Private
B DESCRIPTION NCOD * NSTA 151808 VME/VMX
C DESCRIPTION NENE* NSTA 1186 Private
TDIR DESCRIPTION 2 * NMOD 256 Private
BROAD BROADCAST 4 4 DPE
MAILIN MAILBOX 1+4 * NPUSH 4097 DPE
MAILOU MAILBOX 2+4 * NPOP 2050 DPE
MAP WORKING NIDE 4096 Private
XO0D DESCRIPTION NIDE 4096 VME/VMX or private
STACK WORKING NPAG 1024 Private
PAGES WORKING 8 * NPAG 8124 Private

Table 3.8: Data structures used in the slave algorithm

o NIDE: different identities (i.e. nodes in the high level tree) at most used by the
master,

¢ NPAG: pages available for the PAGES area,
.¢ NPUSH and NPOP: maximum number of pushes and pops respectively.

To give an idea of the memory requirements, the typical memory size for the two-step ap-
plication is also reported (NIDE=4096, NMOD=128, NSTA=593, NTRA=4, NCOD=256,
NENE=2, NPAG=1024, NPUSH=1024, NPOP=512). The final column reports the al-
location chosen for these tables in the same application: of course we have to allocate
in the DPE memory the tables to be addressed both by the high and by the low level
algorithm, otherwise the allocation in the private memory is preferred: this cannot be
achieved only by the bulky table B, which in any case is a read-only table. The slave
firmware is controlled by the master through a command register located in the DPE
biport memory. A bit in this register is used for the synchronization with the master: the
master sets it to start the slave and the latter resets it to notify the end of its processing.
Other bits of the command register are used by the master for coding the function to be
activated on the slave. The available functions are:

¢ the DHMM slave bootstrap;
¢ the configuration of allocation of slave tables;

o the software restart of the recognizer for the first frame of a new recognition;

3.4 Firmware Blocks Details 119

¢ the single frame processing, i.e. the expansion of active paths that constitutes the
main slave activity.

The bootstrap function copies TDIR, A and C areas of the DHMM from the global (VME)
to the DSP private space: if the master wants to change the DHMM, it first loads it into a
shared VME resource and then activates the slave bootstrap. The configuration function
allows definition of the allocation of most data areas at run time instead of at link time.
This way the master can choose the best memory allocation for a specific application
using the same DSP firmware; for instance it can decide whether to allocate XCOD in the
VME/VMX in the private area. The first case is mandatory for the two-step approach,
since in this case this area must be updated by the master at run time; the second case is
preferred for the single step-approach, since in this case it is fixed for the whole time and
hence it does not have to be directly accessable by the master: in this case it is better
to allocate it as private for maximum efficiency. The restart function clears the list of
active subwords and all the work pages are made available again by suitably resetting
the STACK area. The most important and heavy function is of course the single-frame
dynamic programming, which is issued on a frame basis and whose evolution is detailed
in the following in a pseudo-Pascal notation:

{ SINGLE FRAME PROCESSING FUNCTION }
allocate MAILIN in order to handle the double buffer of PUSHES;
read new values in BROAD and NPUSH in MAILIN;
for i := 1 to NPUSH do
set MAP according to PUSH[i] identity;
point to the active page at the head of the linked list;
{ LOOP ON ACTIVE SUBWORDS }
while not end of list do
begin
decode the subword in the page entering XCOD with the page
identity;
retrieve in TDIR the number of states and DHMM entry point
for the subword;
case number of states of
1 : execute the D.P. routine for silence model;
3 : execute the D.P. routine for stationary model;
4 : execute the D.P. routine for transitional model;
(in all these subcases take also into account pushes
in already active pages for dynamic programming on the
first state, suitably marking them in the PUSH list)
end;
if the subword is still active then
go one step ahead in the linked list
else
begin
delete. the page from the linked list;
push the page address onto the stack;
end;

120 3 The Real Time Implementation of the Recognition Stage

end;
{ LOOP ON PUSHES }
for i := 1 to NPUSH do
if PUSH[i] is in an inactive subword (i.e. not marked) then
begin
retrieve in TDIR the number of states and DHMM entry point
for PUSH[i] subword;
update path score for current frame labels;
if the score is under the beam-search threshold then
begin
pop a page address from the stack;
initialize the page fields;
insert the page in the linked list;
if the number of states is 1 then
evaluate the pop path, increment NPOP and
write a new POP record;
end;
end.

We observe that the initial allocation of MAILIN allows the maintenance of a double buffer
of pushes: hence the master and slave algorithm can advance completely in parallel,
without waiting for each other: in fact as pops are produced by the slaves they are
processed by the master for generating the pushes for the next frame: in the meanwhile
the slaves continue their computation by consuming the pushes of the present frame. We
observe also that the slaves processes first all active nodes and the corresponding pushes,
then process the remaining pushes which can activate new nodes. The throughput of
this implementation can be roughly measured by the frame processing time of a single
subword, who is about 50 us, evaluated as a weighted average of 3 possible cases (silence,
stationary and transitional models): this means that a single DSP board can process in
real time about 200 active nodes per centisecond frame in average: in fact the frame labels
are stored in a FIFO and the DSP reads them asynchronously, averaging also higher peak
values. This throughput is rather satisfactory, since the vocabulary organized as a tree of
subwords and the beam search thresholding reduces the frame average of active subwords,
as detailed in Sect. 3.6.

3.5 Some Details on Other System Functions

3.5.1 Program Loading and System Testing

The LOADER program drives a test and bootstrap environment in our multiDSP sys-
tem. This program is implemented in Pascal language and runs in the master Motorola
board; it interacts with the system console, with the system mass memory and with the
“DSP ROMmed kernel”. Figure 3.22 summarizes the LOADER program flow, and the
corresponding console dialogue: first of all the user selects a DSP, then the user decides
whether to perform or not the DSP self-test, finally a DSP program in loadable format is
selected from the system mass memory and transferred first to a fixed VME addressable

3.5 Some Details on Other System Functions 121

area, tranformed into the corresponding program RAM image, and then transferred to
the internal program RAM DSP area by properly activating the DSP ROMmed loader;
this procedure can be iterated for each DSP in the system, obtaining the initial system
validation and the flexible loading of the intended application programs into the intended
DSPs. In the self-test phase these memory tests are automatically performed in sequence:

o test of the data RAM on the TMS32020 chip,

test of the data RAM area installed on the DSP board,

test of the DPX memory on the DSP board,

test of the DPE memory on the DSP board,
o test of a section of the data RAM VME addressable through the DSP board,

¢ test of the DSP RAM program area.

Although these tests are not exhaustive, they have enough coverage, since also the DSP
chip must work properly to drive the memory test algorithm.

3.5.2 Acquisition Firmware Details

The acquisition program ACQUIP displays the words to be uttered in the training phase
and stores on the system mass memory the frame energy and 17 DCTs for every word;
this program is implemented in PASCAL language and runs on the master of the minimal
system configuration reported in Fig. 3.23. In this configuration the DSP1 board reads
through the VMX the samples of every word uttered, then extracts features through
the ESPTPARA program; these parameters are then stored in mass memory files. To
initialize the system the operator must first load the DSP1 program through the program
LOADER; then he must load and run the ACQUIP program, who executes these steps:

e a) it chooses the vocabulary to utter and then chooses the starting word of the
acquisition session,

e b) it initializes the A/D and DSP1 boards for acquisition, ENERGY + 17 DCT
computation and results memorization on a 1Mbit RAM board,

e c) it displays the word to be presently uttered,

e d)it allows the operator to define the start and end points of the utterance, through
a suitable keystroke activation, then automatically discards initial and final low
energy records,

e ¢) it can display frame energies of the uttered word before storing the results on the
mass memory,

e f)it stores on the mass memory a file of frame results for each word uttered, assigning
it a name automatically,

e g) it repeats steps (b) to (f) until all words of the vocabulary are uttered or the
operator terminates the acquisition session.

122 3 The Real Time Implementation of the Recognition Stage

START

l

Select the DSP to test
and/or load

skip
the test
phase

Test phase of the chosen DSP
{sequence of 6 or 5 tests, depending
whether this is the first time or not
after power on for the DSP)

Load phase of the chosen DSP (program transfer
from mass memory to a VME area,then from this to
DSP program memory: in the case that this is the
first time after power on for the DSP copies also the
kemel in the DSP program RAM)

Terminate ?

STOP

Figure 3.22: Loader program flow

3.6 System Evaluations 123

VMX LOCAL BUS
1MBIT
MASTER CPU MEMORY BOARD DSP 1 A/D
1 VME BUS I I I
l MICROPHONE

MASS MEMORY

Figure 3.23: Minimal system configuration used for the acquisition

3.5.3 Parameters Training Environment

Figure 3.24 summarizes the VAX/VMS training environment. We did not duplicate the
parameter training functions, already developed in the VAX/VMS environment, but we
integrated this environment in our VERSADOS system: in fact the VERSADOS system is
first used for real time speech acquisition until parameter files extraction; then these files
are transferred in order through an RS232 serial connection to the VAX/VMS host, where
system parameters are trained; then the computed parameter files can be transferred
again through the same connection from the VAX/VMS to the VERSADOS system. The
following parameters are evaluated from the DCT plus energy frame by frame files:

¢ the codebook, for the real time vector quantizer,

o the phonetic classifier parameters,

o the matching costs, for the real time lexical access module,
o the hidden Markov models (HMM) for the real time verifier.

At the end of the training, these parameters are suitably transformed from the format
used in the VAX/VMS system to the format used in the final VERSADOS system, and
then transferred to this one.

3.6 System Evaluations

3.6.1 General Considerations

The recognition system has been evaluated using a large test vocabulary of 1008 Italian
words oriented to a geographical data base access; this test vocabulary is described by a
tree connecting 5295 subwords. The different subwords selected for the Italian language

124 3 The Real Time Implementation of the Recognition Stage

— (TO THE RECOGNITION STAGE)

(TO THE RECOGNITION STAGE)

Figure 3.24: Training environment

o AL

3.6 System Evaluations 125

are 125, of which 101 represent transitional sounds, 22 stationary 3-state sounds and 2
stationary l-state sounds [5]. For continuous speech testing this vocabulary has been
arranged into 100 test phrases, with a total of 578 words. The system has been trained
with a phonetically balanced vocabulary of 1105 words: hence in this vocabulary each
subword appears at least 12 times and in different contexts in order to have a statistically
significant training. In the following we will distinguish experiments carried out on the 2
DSP, 12.5 MHz CPU system, called the basic system, experiments carried on the 2 DSP,
20 MHz system, called the intermediate system, and experiments carried on the 3 DSP
20 MHz CPU system, called the final system.

3.6.2 Single-Step Isolated Words Recognition

Single-step isolated words recognition has been characterized in the basic system version
only and for two subcases (Tab. 3.9):

¢ single-speaker training,
e multi-speaker training.

Single-speaker training has been verified against the same speaker; multi-speaker training
has been performed on a set of 6 male speakers and has been verified against a different
male speaker; the codebook size i1s of 144 code vectors for the single speaker and of 272
code vectors for the multiple speakers. For both cases we report results obtained with
a standard beam search threshold value (20) and with a more tolerant one (25): in the
former case we found a better system throughput, in the latter instead a little increase of
the recognition accuracy and a sensible decrease of the throughput. This second case in
fact recovers some correct words in the hypothesized cohort by augmenting the number
of possible paths and hence the computational load of the system. Given that the basic
system configuration can follow in real time a recognition task with 200 average active
subwords per frame at most, we can say that for the standard beam search threshold the
basic system can follow in real time both the single speaker and the multispeaker case:
hence in this case the basic system configuration (2 DSP 32020 + 1 CPU 68020 at 12.5
MHz) is already satisfactory.

3.6.3 Two-Step Isolated Words Recognition

Table 3.10 summarizes accuracy and throughput results obtained for the basic system
configuration in the two-step recognition algorithm for isolated-word recognition: we con-
sider 6 subcases, combining 2 possible values of the beam search threshold (55 and 67)
and 3 possible certainty factors (1, 2 and unused) for the three-dimensional dynamic pro-
gramming (3DP) lexical access module [6]; by contrast the beam search threshold of the
detailed DHMM verification i1s 20 for all subcases. For each of these subcases we measured
8 parameters, 3 of them pertinent to the hypothesization stage and the other 5 pertinent
to the verification one. The best accuracy of the hypothesization stage is obtained with
the larger 3DP beam search threshold and without the certainty factor: in this case the
correct word is included in the 97.5% of cases in the cohort generated by the lexical access
stage; the average size of this cohort 1s larger than in the others subcases, however it is an

126 3 The Real Time Implementation of the Recognition Stage

Single - speaker | Multi - speaker
Beam search threshold

20 25 20 25
Average cohort size 3.7 5.7 6.7 13.4
Inclusion rate into the cohort 98.10% 99.00% 94.10% 97.60%
Inclusion rate up first score 91.80% 92.00% 82.20% 83.40%
Inclusion rate at second score 4.10% 4.30% 7.30% 8.40%
Inclusion rate up second score 95.90% 96.30% 89.50% 91.70%
Inclusion rate at third score 1% 1.30% 1.40% 1.40%
Inciusion rate up third score 96.90% 97.60% 90.90% 93.10%
avg. active subwords per frame 139.3 250 182 308.5
Max. active subwords per frame 755 1255 1800 2412
Averdge word recognition time 09 s 13s 11s 1.7s
Average utterance duration 0.95 085 s 085 s 085s

Table 3.9: Experimental results of the single-step isolated word recognition

order of magnitude less than the whole vocabulary size. The following verification stage
then reduces the average final cohort size from 82.6 words to 2.7 with a corresponding
small decrement of the correct word inclusion rate from 97.5% to 96.3%. The time spent
in the hypothesization stage is bigger than the time spent in the verification one, while
the verification stage is rather underutilized: in fact the first stage has been programmed
in Pascal language in a general purpose microprocessor, whereas the second one has been
programmed in assembly language in a DSP processor. We could reduce this “hypothe-
sization stage bottleneck” of the present implementation by transporting if not all then
at least some computations of the hypothesization stage (e.g. frame segmentation) into
a DSP processor. This has not be pursued since the throughput was already satisfactory
for the 1 k-word intended application; for larger vocabularies however this improvement
could best exploit the potential throughput of this algorithm.

3.6.4 Single-Step Continuous Speech Recognition

Table 3.11 summarizes results obtained for the single-step continuous speech recognition
system on 100 test phrases oriented to the vocal access of a geographical data base;
four evaluations, related to four different speakers, are reported. We performed two
experiments for each speaker, the first one with the standard beam search threshold (20)
and the second one with a more relaxed beam search threshold (22.5): in the second one
we measure some accuracy improvement with a sensible increase of the computational
load.As.far as. accuracy.is,concerned, we have to point out that the measure of total
missing words is rather conservative because most of these are short nonfunctional ones;
their absence does not affect the understanding level accuracy (3]. Since in this case the

3.6 System Evaluations

Lexical-Access 3DP
Beam-search threshold

Lexic. Access
Certainty factor|

Table 3.10:
stage beam

55.0 67.0
Correct word incl. in the cohort after hypoth 92.60% 96.20%
Average cohort size after hypothesization 37.9 58.8
Average elapsed time due to hypotesization 04 s 0.7s
Correct word incl. in the final cohort 91.50% 95.20%
Average cohort size after verification 2.5 2.6 "0
Average elapsed time due to verification 02s 03s
Average number of active subwords 22.2 27.5
Maximum number of active subwords 233 298
Correct word incl. in the cohort after bypoth 93.60% 897.40%
Average cohort size after hypothesization 48.1 80.8
Average elapsed time due to hypothesization 06s 09s
Correct ward incl. in the final cohort 92.30% 96.10% 2.0
Average cohort size after verification 2.6 2.7
Average elapsed time due to verification 03s 04s
Average number of active subwords 25.8 31.6
Maximum number of active subwords 290 319
Correct word incl. in the cohort after hypoth 93.70% 97.50%
Average cohort size after hypothesization 49.1 82.6
Average elapsed time due to hypotesization 06 s 09s
Correct word incl. in the final cohort 92.4 96.30% NONUSED
Average cohort size after verification 2.6 2.7
Average elapsed time due to verification 03s 04s
Average number of active subwords 27 34
Maximum number of active subwords 290 319

127

Experimental results of the two steps isolated word recognition (verification

search threshold = 20)

128 3 The Real Time Implementation of the Recognition Stage

|Phrases with |Percenlage of |Totali missi Per ge of |A g

all uttered phases with |words in phrases with [latlice Average active [maximum sctive

words In the | all ultered all lattices some words |hypothesized [subwords subwords

lattice in the words missing in words
iatlice the lattice

beam search thresh. =20 B6 B6% 14 2.42% 3715 429 1949
1* speaker
beam search thresh. =225 a0 90% 10 1.73% 6989 560.6 2238
beam search thresh. =20 95 95% 8 1.04% 270.9 301.3 1522
2* speaker
beam search thresh =225 95 95% 6 1.04% 472.7 397.4 1800
beam search thresh. =20 B3 83% 17 2.94% 489.6 551.3 1879
3* speaker
beam search thresh. =225 87 87% 13 2.25% B84.2 710.6 2172
beam search thresh. =20 86 86% i5 2.59% 206.7 410.6 1816
4* speaker
beam search thrash =225 93 -93% 7 1.21% 405 8 539.5 2177

Table 3.11: Experimental results of continuous speech recognition on 100 phrases with
1008 words vocabulary pronounced by four different speakers

average number of active subwords per frame is substantially larger than 200, we cannot
presume to have a real time system with the basic configuration, hence we improved
our system first to an intermediate configuration (with a faster CPU), then to a final
configuration, with two DSPs in parallel for DHMM verification; Table 3.12 compares
these three configurations from the point of view of the throughput. The final system
configuration already seems adequate, since with the standard beam search threshold the
ratio of the total recognition time to the net utterance time after phrase endpointing is
1.67; in these conditions the user perceives the system as nearly real time since he adds
to the net utterance time the starting and ending silences. We can verify however that
by doubling the number of DSPs performing the DHMM verification the system speed is
not doubled: this is also due to the present program implementation. We have singled
out some small program modifications which can improve this point [46].

3.7 Conclusions

We have developed a multiDSP open architecture for signal processing, presently equipped
with a master CPU and three DSPs, one for feature extraction and the other two for
DHMM verification: in this configuration we have implemented three different kind of
recognition algorithms:

e the single-step isolated-word recognition (with full search on the whole vocabulary),

3.7 Conclusions

Basic system |Intermed system|Final system
CPU 12.5 Mhz |CPU 20 Mhz CPU 20 Mhz
DSP2-A only |DSP2-A only DSP2-A and DSP2-B
Avg. speech utterance duration 3.7 sec. 3.7 sec. 3.7 sec.
beam search =20 10.5 sec. 8.52 sec. 6.2 sec.
Avg. recognition time
beam search =22.5 13.6 sec. 11 sec. 8.1 sec.
beam search =20 2.8 2.3 1.67
Recognition time/Utterance time
beam search =22.5 3.7 3 2.2

129

Table 3.12: Throughput results of continuous speech recognition system on 100 phrases
of words into the 1008 words vocabulary

o the two-step isolated-word recognition (with a first hypothesization stage and a
second refinement stage),

o the single-step continuous-words recognition.

For all of all these implementations a rather satisfactory recognition accuracy has been
measured in the speaker-dependent case with a thousand-word Italian vocabulary, with
a high quality head-mounted microphone input. The input utterance is presently lim-
ited by an initial keystroke for the single word application and by an initial and a final
keystroke for the continuous speech application. The isolated words case is handled in
real time both in the single and in the double step approach; for wider vocabularies than
we used the double step approach would be more appropriate: in the latter case, however,
to have a better load balancing between the hypothesization and the verification steps it
would be advisable to transport from the Motorola CPU to the TMS32020 at least the
most computation-intensive sections of the hypothesization stage. In the connected word
case the present configuration performs the recognition in 1.5 to 2 times the net input
utterance time, and hence it is perceived by the user as operating in real time, taking
into account the console interaction 7. The system has also been adapted to a German
and to a French vocabulary and, although a formal evaluation has not been performed
in these cases, similar accuracy and performances could be expercted. Our real time
implementation shows that present technology is already adequate for speech recognition
tasks of some complexity in a not-too-expensive system. We think also that the overall

7In fact between the two keystrokes we have an initial silence, the utterance and then a final silence.

130 3 The Real Time Implementation of the Recognition Stage

architecture presented (i.e. the task partition and allocation, the intertasks dialogue, the
hardware organized as common bus, local plus distributed biport memory) can be retained
for further more ambitious goals, while by using new-generation faster and architecturally
richer DSPs, supporting also floating point computations, we could insert in this frame-
work algorithmic improvements required for telephone input and speaker independence,
excluding any keystroke interaction [24].

ol LA ZJL?H

Bibliography

10.

11.

. Y. Kawakami, H. Ishizuka, M. Watari, H. Sakoe, T. Hoshi, T. Iwata: “A micropro-

cessor for speech recognition”, IEEE Journal on Selected Areas in Communications,
vol. 3, pp. 369-376, March 1985

. R.E. Owen: “A VLSI dynamic time warp processor for connected and isolated word

speech recognition”, Proc. of the ICASSP ’85, pp. 985-988, Tampa, Fla., March 1985

. G. Quenot, J.L. Gauvain, J.J. Gangolf, J. Mariani: “A dynamic time warp VLSI

processor for continuous speech recognition”, Proc. of the ICASSP ’86, pp. 1549-
1542, Tokyo, Japan, Apr. 1986

J.R. Mann, F.M. Rhodes: “A walfer scale DTW multiprocessor”, Proc. of the ICASSF
‘86, pp. 1557-1560, Tokyo, Japan, Apr. 1986

R. A. Kavaler, M. Lowy, H. Murveit, R. R. Brodersen: “A Dynamic Time Warp
Integrated Circuit for a 1000 word speech recognition system”, IEEE Journal of
Solid State Circuits, vol. 22, pp. 3-14, February 1987

S.G. Glinski, T.M. Lalumia, D.R. Cassiday, Taiho Koh, C. Gerveshi, G. A. Wilson,
J. Kumar: “The Graph Search Machine: A VLSI architecture for connected speech
recognition and other applications”, IEEE Proceedings, vol. 75, pp. 1172-1184, Sept.
1987

R. Cecinati, A. Ciaramella, G. Venuti, C. Vicenzi: “A dynamic time warping custom
integrated circuit for speech recognition”, Proc. of the EUSIPCO ’86, The Hague,
The Netherlands, pp. 1215-1218, Sept. 1986

. R. Cecinati, A. Ciaramella, L. Licciardi, G. Venuti: “Implementation of a dynamic

time warp integrated circuit for large vocabulary isolated and connected speech recog-
nition”, Proc. of EUROSPEECH ’89, pp. 565-568, Paris, France, Sept. 1989

A. Albarello, R. Breitschaedel, A. Ciaramella, E. Lenormand, R. Pacifici, J. Potage,
J.P. Riviere, N. Scheibel, G. Venuti: “Implementation of an acoustical front-end
using the TMS32020”, Proc. of the Digital Signal Processing Conference, Florence,
Italy, September 1987

C. Erskine, S. Magar: “Architecture and applications of a second generation digital
signal processor”, Proc. of the ICASSP 85, pp. 228-231, Tampa, Fla., March 1985

K.S. Lin, G.A. Frantz, R. Simar jr.: “The TMS32020 family of digital signal proces-
sors” s IEEE Proceedings; vol:-75;-pp. 1143-1159, Sept. 1987

132 Bibliography

12. D.B. Roe, A.L. Gorin, P. Ramesh: “Incorporating syntax into the level-building
algorithm on a tree-structured parallel computer”, Proc. of the ICASSP ’89, pp. T78-
781, Glasgow, UK, May 1989

13. R. Bisiani, T. Anantharaman, L. Butcher: “BEAM: an accelerator for speech recog-
nition”, Proc. of the ICASSP ’89, pp. 782-784, Glasgow, UK, May 1989

14. S. Chatterjee, P. Agrawal: “Connected speech recognition on multiple processor
pipeline”, Proc. of the ICASSP 89, pp. T74-777, Glasgow, May 1989

15. W. Fiéher: “IEEE P1014 - A standard for high performance VME bus”, IEEE Micro,
vol. 5, pp. 31-41, Febr. 1985

16. D. Gustavson: “Computer buses - A tutorial”, IEEE Micro, vol. 4, pp. 7-22, Aug.
1984

17. VME Bus Manufacturers Group: VME Bus Specification Manual. [with VME Revi-
sion B, August 1982, and VMX Revision A, October 1983]

18. P. Harold: “Powerful local buses join the VME bus”, EDN, pp. 199-208, Apr. 18,
1985

19. M. L. Fuccio, R. N. Gadenz, C. J. Garen, J. M. Huser, B. Ng, S. P. Pekarich: “The
DSP32C: AT&T’s second generation Floating Point Digital Signal Processor”, IEEE
Micro, vol. 8, pp. 30-48, Dec. 1988

20. P. Papamichalis R. Simar, Jr.: “The TMS320C30 Floating Point Digital Signal Pro-
cessor”, IEEE Micro, vol. 8, pp. 13-29, Dec. 1988

21. E. A. Lee: “Programmable DSP architectures: Part I", IEEE ASSP Magazine, vol.
5, pp. 4-14, Oct. 1988

22. E. A Lee: “Programmable DSP architectures: Part II”, IEEE ASSP Magazine, vol.6,
pp. 4-14, Jan. 1989

23. A. Dinning: “A survey of synchronisation methods for parallel computers”, IEEE
Computer, vol. 22, pp. 66-77, July 1989

24. ESPRIT II Project N.2218 (SUNDIAL). Technical Annex

25. D. MacGregor, D. Mothersole, B. Moyer: “The Motorola MC68020", IEEE Micro,
vol. 4, pp. 101-118, Aug. 1984

26. VERSADOS Operating System - Technical Documentation

27. C. Huntsman D. Cawthron: “The MC68881 floating point coprocessor”, IEEE Micro,
vol. 3, pp. 44-54, Dec. 1983

28. G.W. Cherry: Pascal Programming Structures for Motorola Microprocessors. Reston
Publishing, Prentice Hall, 1982

Bibliography 133

29

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

M. Ajmone Marsan, G. Balbo, G. Conte: “Performance models of multiprocessor
systems”, MIT Press Series in Computer Systéms, Chapters 9 and 10, 1986

A. Ciaramella, G. Venuti: “Vector quantization firmware for an acoustical front end
using the TMS32020”, Proc. of the ICASSP '87, pp. 1895-1898, Dallas, Tex., Apr.
1987

F.J. Harris: “On the use of windows for harmonic analysis with the Discrete Fourier
Transform”, IEEE Proceedings, vol. 66, pp. 51-83, , Jan. 1978

E. O. Brigham: The Fast Fourier Transform, Sect. 10-10, pp. 163-171. Prentice Hall,
1974

L.R. Morris: “Structural considerations for large FFT programs on the TI TMS32010
DSP microchip”, Proc. of the ICASSP ’85, pp.42.13.1-4, Tampa, Fla., March 1985

P. Kabal, B.Sayar: “Performance of fixed-point FFT’s: rounding and scaling consid-
erations”, Proc. of the ICASSP ’86, pp.6.3.1-4, Tokyo, Japan, Apr. 1986

S. Prakash, V.V. Rao: “Fixed point error analysis of Radix-4 FFT”, Signal Process-
ing, vol.3, pp.123-133, Apr. 1981

K. H. Davis, P. Mermelstein: “Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences”, IEEE trans. ASSP,
vol.28, pp. 357-366, Aug. 1980

A. Kaltenmeier: “Acoustic/phonetic transcription using a polynomial classifier and
Hidden Markov Models” Proc. of the Montreal Symposium on Speech Technology,
pp. 95-96, Montreal, Canada, July 1986

P. Capello, G. Davidson, A. Gersho, C. Koc, V. Somayazulu: “A systolic vector quan-
tization processor for real time speech coding”, Proc. of the ICASSP 86, pp. 41.1.1-4,
Tokyo, Japan, Apr. 1986

P. Laface, G. Micca, R. Pieraccini: “Experimentals results on a large lexicon access
task”, Proc. of the ICASSP 87, pp. 809-812, Dallas, Tex., Apr. 1987

M. Cravero, R. Pieraccini, F. Raineri: “Definition and evaluation of phonetic units for
speech recognition by Hidden Markov Models”, Proc. of the ICASSP 86, pp. 42.3.1-
4, Tokyo, Japan, Apr. 1986

L. Fissore, E. Giachin, P. Laface, G. Micca, R. Pieraccini, C. Rullent: “Experimental
results on large vocabulary continuous speech recognition and understanding”, Proc.
of the ICASSP ’88, pp. 414-417, New Jork, NY, Apr. 1988

L. Fissore, P. Laface, G. Micca, R. Pieraccini: “Interaction between fast lexical access
and word verification in large vocabulary continuous speech recognition” Proc. of the

ICASSP 88, pp. 279-282, New York, NY, Apr. 1988

134 Bibliography

43. L. Fissore, P. Laface, G. Micca, R. Pieraccini: “Very large vocabulary isolated utter-
ance recognition: a comparison between one pass and two pass strategies”, Proc. of

the ICASSP ’88, pp. 203-206, New York, NY, Apr. 1988

44. G. Micca, R. Pieraccini, P. Laface, L. Saitta, A. Kaltenmeier: “Word Hypothesization
and Verification in a Large Vocabulary”, Proc. of 3rd Esprit Technical Week, pp. 845-
853, Brussels, Belgium, Sept. 1986

45. A. Ciaramella, G. Venuti: “Dynamic programming with hidden markov models on a
TMS32020 digital signal processor”, Proc. of EUSIPCO ’88, pp. 751-754, Grenoble,
France, Sept. 1988

46. A. Ciaramella, D. Clementino, R. Pacifici: “Characterization of a large vocabu-
lary isolated words and continuous speech recognizer”, Proc. of the Eurospeech 89,
pp- 437-440, Paris, France, Sept. 1989

Chapter 4

The Understanding Algorithms

Roberto Gemello, Egidio Giachin, Claudio Rullent (CSELT)

4.1 Overview

4.1.1 Introduction

The final goal of a continuous speech understanding system is the generation of a repre-
sentation of the utterance meaning, beside the recognition of the utterance words. From
this representation a proper action can be taken in order to satisfy the needs of the user
that interacts with the system (for instance by giving him an answer to a question). Both
activities, word recognition and understanding, have to be performed and should take
advantage of available knowledge about words, language and domain. Recognition must
use that knowledge as a source of constraints for word disambiguation while the under-
standing activity is entirely based on that knowledge and requires the same effort as in
the case of written natural language understanding.

The first large-scale effort to integrate recognition and understanding was accom-
plished within a DARPA sponsored project in the late 1970s. However, the techniques
they used there for knowledge representation (mainly context-free semantic grammars)
were of low complexity, as knowledge about language and domain had to be used for both
recognition and understanding. That resulted in a limitation of the potentialities of the
natural langiiage understanding activity. Written natural language processing techniques,
on the other hand, have considerably increased their power and flexibility in recent times,
mainly in the area of representation of syntactic and semantic knowledge. New repre-
sentational tools have been developed, more powerful and expressive than context-free
grammars although more complex. As a general trend, keeping separate representations
for syntactic and semantic knowledge is considered beneficial to better exploit specific
features and regularities.

When this project was started in the mid-1980s, it was felt that taking advantage
of such improved techniques could result in a more efficient way of exploiting language
constraints for a system whose purpose is not limited to recognition but includes meaning
comprehension. In other words, an approach has been followed in which the stress on
language processing techniques is as strong as on signal processing techniques. Conceptu-
ally, the basic philosophy was to start from a state-of-the-art system for written language
understanding and-extendritsicapabilities to deal with word lattices rather than definite
word sequences.

A word lattice is a/collection of Word Hypotheses pertaining to a single utterance. Each

136 4 The Understanding Algorithms

UTTERED SENTENCE:
"DIMMI LA LUNGHEZZA DEL TEVERE"
(‘TELL ME THE LENGTH OF THE TEVERE")
WORD HYPOTHESES
f ol LUNGHE TEVERE
— [— s
DIMMI DELTA
LUNGHEZZA
LA
Yo AVERE
CHE
" wao S5 om
- e ESSA
g NERO
ANCHE ALTE
bm————- - hes—=-- -+ b ———— -
TIME

Figure 4.1: Structure of the lattice of word hypotheses

word hypothesis is characterized by a score reflecting the quality of the match between the
observed signal and the word model (Fig. 4.1). The number of word hypotheses has to be
high enough to contain the correct hypotheses (i.e. those corresponding to the actually
uttered words). Improvements in signal processing and pattern recognition techniques
have produced (and will furthermore produce in the future) a reduction in the number
of wrong word hypotheses and an improvement in the reliability of their scores; thus, the
importance of having well-grounded natural language processing tools will become even
greater in perspective, and we expect that the approach that has been followed in this
project will allow us to converge towards a global system using the best characteristics of
the two different classes of techniques, signal processing and langnage processing, suitable
for the two levels of elaboration.

At present the above mentioned approach is studied by different reasearch groups.
Among them are the groups at University of Erlangen-Nuernberg [5], Philips [28], Siemens
[29], CNET (2], Carnegie Mellon University [19] and SRI [40]. A common element of most
of these approaches is the use of a lattice of word hypotheses as the input of the un-
derstanding stage (this feature has also been used in some systems aiming essentially at
recognition only [27], [25]). These approaches to speech understanding are characterized
by a more declarative way of representing syntactic and sémantic knowledge compared
to the projects developed in the previous decade, but in our opinion there are still some
critical aspects that require new solutions. The final part of the introduction discusses
two important aspects that have been analyzed in our research and whose solutions rep-
resents the most innovative aspect of SUSY (Speech Understanding SYstem), the system
developed at CSELT.

A convincing answer to the problem of an effective integration between syntactic
knowledge and semantic knowledge is still to come. The problem is from one side to
maintain independent and highly declarative representations for both semantic and synt-
actic knowledge and from the other to use them in an integrated way in order to exploit

4.1 Overview 137

constraints as soon as possible. While this aspect is important for written natural lan-
guage understanding [6], it is vital for speech, where the search space is very large, being
the non-determinism of parsing added to the uncertainty of input data.

Another crucial problem is that of control, that is, of selecting the appropriate analysis
actions in order to achieve high efficiency while keeping sufficiently small the probability
of incorrect understanding. While some speech understanding systems based on the use
of semantic grammars were really concerned about the problem of control (e.g. [42]), now
this aspect seems to be underestimated. That is not surprising, as an increased complexity
of the representation formalisms for syntax and semantics makes a formal control policy
hard to reach.

This section aims at giving a general overview of the problems outlined above and the
solutions proposed by our system [14, 13, 30]. The section will cover the essentials about
language modeling, parsing and control.

4.1.2 Some Basic Requirements of a Parser for Speech

The understanding stage needs to detect, in the lattice, the best scoring sequence of
word hypotheses covering the whole utterance and coherent according to the models of
the language and of the domain. The presence of word hypotheses spread all over the
utterance instead of a sequence of words requires a new kind of parser whose main features
are related to a very high flexibility in the control strategy. Some features of the parser
are the following:

¢ It is important to have powerful control strategies based on the combination of word
scores. An efficient parser must take this aspect into account.

e Due to the limitations inherent in the recognition stage, a “tolerant” parser is re-
quired:

— Contiguous word hypotheses may slightly overlap, and gaps may exist between
them.

— Very short words (e.g. articles) are normally difficult to detect by the recogni-
tion level and may be missing from the lattice; if they do not convey essential
semantic information the parser should not rely on them to understand the
sentence.

These requirements argue against a left-to-right parser.

e The parsing strategies must be suitable for parallelism. Only a highly parallel
machine can perform speech understanding in real time. See [3], [16] for a discussion
of a possible way of exploiting parallelism from the parsing strategies adopted by
SUSY.

o Syntactic and semantic knowledge must be separately defined and used in a joint
way. Such separation allows a reduction of the time required for an expert to define
an application for a new domain, i.e. to declare all the knowledge required to adapt
the speech understanding system to the new domain.

138 4 The Understanding Algorithms

DICTIONARY -
SYNTAX
SEMANTICS

urgt;zb oF UTTERANCE NATURAL

w MEANING LANGUAGE

HYPOTHESES REPAESENTATION INFORMATION ANSWER
pARSER . ACCESS & .

>

NATURAL LANGUAGE
ANSWER GENERATION

HYPOTHESIS
NETWORK

Figure 4.2: Simplified overall architecture of the understanding module

A simplified scheme of the understanding system is shown in Fig. 4.2. A recognition
level, that makes no use of syntactic and semantic knowledge, generates a lattice of scored
word hypotheses that constitutes the input data to the understanding level. The uttered
sentences are questions aimed at extracting information from a data base pertaining to a
given domain (Italian geography).

The lattice is processed by a parser that recognizes the most probable word sequence
and generates an internal formal representation for the meaning of such a word sequence.
The formal representation, a conceptual graph of domain concepts connected by rela-
tions, is used to extract the required information from the database. Starting from such
information a natural language answer is generated and given to the user.

The parser is based on the use of a dictionary and on a set of syntactic and sem-
antic pieces of knowledge that are briefly outlined in the following section. The internal
structure generated and used by the parser is a network of phrase hypotheses. So the
parser activity consists in continuously generating new phrase hypotheses that represent
alternative or cooperative paths of the parsing activity. For a number of reasons that
should become clear later on, we are not dealing with chart parsing [41], even if some
commonalities do exist, mainly the fact that both generate and use a network structure.

4.1.3 Knowledge Sources from Dependency Rules and Conc-
eptual Graphs

The parser, during its activity, makes use of the following different kinds of knowledge:

e A dictionary, where each domain word is characterized by its morphological and
semantic features.

o A set of dependency rules (Dependency Grammar formalism, [20]) augmented with
rules for controlling morphological agreement conditions; dependency rules must
constitute a subset of the language sufficient to cover the application.

o A set of caseframes [11] expressed using the conceptual graphs formalism [37]. They
describe domain knowledge and are represented by domain concepts connected by
conceptual relations.

4.1 Overview 139

Starting from the last two knowledge bases and from additional syntax/semantics mapping
knowledge, an integration of syntax and semantics is performed, generating items called
Knowledge Sources (KS) in the following.

Each KS integrates different types of knowledge. The main body of knowledge is
a problem-solving structure where the different subproblems are not independent but
constrained by different kinds of knowledge: temporal constraints, morphological and
grammatical constraints, etc.

This structure results from a “compilation process” that integrates the semantics of
one or more caseframes (expressed by conceptual graphs) with the structure of one or
more dependency rules. This compilation process is performed off-line through the use
of “mapping” information, that relates implicit grammatical relations of the dependency
rules with the semantic relations of conceptual graphs.

A K8 is also characterized, in addition to the problem-solving structure, by the remain-
ing morphological, syntactic and semantic information. This knowledge is transformed
off-line into special structures suitable to perform efficiently the activity of constraints
propagation. All the other kinds of knowledge used by a KS are expressed through proce-
dures. Forinstance a procedure (that makes use of thresholds) represents knowledge about
the recognition system word-spotting characteristics; it is used to impose constraints on
the allowed gaps and overlaps between word hypotheses.

The problem-solving structure of the KS permits them to be seen as constituting a
Deduction System, i.e., roughly speaking, a system able to run forward and backward.
The actions that a KS can perform when it is triggered can be described in terms of five
operators; some of them behave in a forward fashion, some in a backward fashion, while
others allow the generation of new deductive processes and the integration of different
ones.

The description of dependency rules, conceptual graphs and their integration into KSs
is contained in Sects 4.2, 4.3 and 4.4.

4.1.4 The Importance of Control Strategies

The word lattice is usually characterized by a lot of spurious word hypotheses intermixed
with the correct ones (i.e. those that correspond to words really uttered and covering the
given time interval). Some incorrect word hypotheses may also happen to have a better
score than the correct ones.

Two reasons for an effective control strategy

In a problem-solving approach to speech understanding two main problems arise:

e There is a risk of erroneous understanding, that is, spurious word hypotheses of the
lattice can lead to incorrect solutions before the right one is found. So the utterance
can be incorrectly understood.

o The search space is very large, adding the non-determinism typical of the parsing
to the uncertainty of input data. The whole search space cannot be explicated.

140 4 The Understanding Algorithms

The elimination of incorrect solutions requires a method for comparing solutions so that
the best one can be selected as the correct one. A number, called the Quality Factor, is as-
signed to them; this number depends only on the word hypotheses involved in the solution.
So a formal probabilistic method assigns a number, the quality factor, to combinations
of word hypotheses, starting from their scores and from their time intervals. Among the
tested methods of assigning quality factors, the following one has been selected:

o Score density with or without shortfall [42].

As regards the second problem, quality factors must be used also to direct the search,
in order to find the solution long before having to perform an impossible exhaustive search.
From the probabilistic point of view the most natural way of dealing with scored input
data is to start with the best word hypotheses and trying to combine them together until
a solution is obtained. The problem is the necessity of exploiting constraints from domain
knowledge as soon as possible to drastically reduce the combinatorial activity. On the
other hand a good way of exploiting domain constraints is a bottom-up parsing strategy
guided by the quality factors of the word hypotheses in the lattice. But this approach
is inadequate when the search space is very large due to a great amount of noise. In
fact dangerous bottlenecks cannot be avoided if expectations are not considered. As an
example consider a situation where a low-level constituent, part of the solution, has to be
formed using a very bad word hypothesis WH1 (this could easily happen). The problem
is that the solution can have a good quality factor (the bad score of WH1 is balanced by
the good scores of the other word hypotheses) but it can be delayed by WH1 because a
lot of word hypotheses having a score better than WH1 but really worse than the quality
factor of the solution have to be considered.

The role of expectations: Integrating top-down and bottom-up parsing strate-
gies

An important feature of SUSY to cope with these difficulties is the possibility of creating
expectations at the highest levels. This is always possible in our approach because each
KS has been obtained from a caseframe and can be triggered by a word that represents
the caseframe header. Sc a good word hypothesis always has a KS that can be activated
by it. In addition the use of dependency rules perfectly suits this point: each node of
a dependency tree is taken by a word, and such a word hierarchy perfectly allows the
generation of high-level expectations.

The informal conclusion is that in some cases good word hypotheses cause the parsing
to proceed bottom-up while in other cases they first create expectations (goals) and then
cause the parsing to proceed top-down, looking for word hypotheses when necessary in
order to perform single backward steps. The acquisition of a new word hypothesis dur-
ing a top-down step usually worsens the quality factor of a subgoal (incomplete phrase
hypothesis), delaying its processing, while in the meantime other phrase hypotheses will
be processed. Integration among bottom-up and top-down steps is vital: having to solve
an incomplete phrase hypothesis, a check is made to see if a suitable complete phrase
hypothesis has already been generated and vice versa.

4.1 Overview 141
Deduction instances and search

The understanding of an utterance is completed when a solution S involving a certain
set wl,...,wn of word hypotheses is obtained. The quality factor resulting from wl,...,wn
is supposed to be the best one among the possible solutions. Such solution can be rep-
resented by a Deduction Tree: the AND tree whose nodes are facts (complete phrase
hypotheses) and (sub)goals (incomplete phrase hypotheses). Following the informal guide-
lines of the previous section, a solution is obtained starting from one or more initial word
hypotheses (the best ones) and then performing predictions, bottom-up and top-down
steps and joining constituents.

Let us consider the simple case of a single initial word hypothesis that performs a
prediction generating a goal that is solved through a sequence of top-down steps. From
the probabilistic point of view, new word hypotheses are connected one by one (assuming
they satisfy all the required constraints) to the initial one until the solution is reached,
connecting all the word hypotheses wl,...,wn. We call this activity a Deductive Process
and each intermediate step is called Deduction Instance (DI). Some steps consist in adding
a new word hypothesis to the existing ones, others represent only activities performed by
a KS that do not involve the acceptance of a new word hypothesis. The OR alternatives
of the overall search process are taken into account by different DIs. Each deduction
instance can be represented by its deduction tree -and it is characterized by a quality
factor obtained applying a selected probabilistic method to the word hypotheses of the
deduction tree.

A similar situation happens when bottom-up steps are considered. In this case DIs
have deduction trees whose nodes are all facts; they are called fact DIs while the others
are called goal DIs. A single deductive process leading or not (if it fails) to a solution is
a sequence of DIs.

Joining deduction instances

The optimal result would be obtained if the quality factors corresponding to the sequence
of DIs worsen gradually in quality, converging to the quality factor of the solution. The
required integration among bottom-up and top-down steps can be obtained by merging
together two deductive processes that have previously evolved independently: from two
DIs a new DI is generated.

With some simplifications the whole deductive activity can be seen as a search in
a state space. A state is a deductive process at a certain point of its evolution, i.e. a
deduction instance. Operators can be applied on these states performing single prediction,
bottom-up, top-down or merge steps. To each state a quality factor is also associated,
then a best-first search can be performed; the state priority is given by the DI quality
factor. On each state all the possible operators are applied.

The description of the conceptual foundation of the parsing strategy, the definition of
deduction instances and the global strategy is contained in Sect. 4.5. In addition Sect.
4.7 illustrates the solutions to the problem of short words missing from the lattice.

142 4 The Understanding Algorithms

4.1.5 Control Strategy and Operators

The control of the deductive activity is carried out by a Deduction Scheduler that at every
cycle selects the best item among the remaining word hypotheses and the DIs (phrase
hypotheses generated so far and inserted into a network called the Hypothesis Network).
All the items have a priority given by their quality factors (in the case of a DI) or by their
scores (in the case of a word hypothesis). Each goal DI is also characterized by a Current
Subgoal, selected among its unsolved subgoals. If the deduction scheduler selects a DI,
the Deduction Cycle is entered, otherwise the Activation Cycle is performed.

The activation cycle is executed when the best DI has a quality factor worse than the
score of the best word hypothesis. In that case such a word hypothesis is extracted from
the lattice, and the activation operator is applied, making predictions. Given a KS the
operator decides if it can be triggered by the given word hypothesis; if so a DI is generated
and inserted into the hypotheses network. Quality factors are assigned to the new Dls.
Conceptually this operator creates expectations.

In the deduction cycle the selected best DI is given to the KS. The activities per-
formed by the KS when it is triggered can be described in an abstract way through five
operators that represent the process of generating new hypotheses starting from others.
The characteristics of the triggering DI define which operator is applicable. Each operator
application represents an alternative continuation of the deductive process leading to the
selected DI. The operators are described in Sect. 4.5.13.

4.1.6 Representing Deduction Instances with Memory Struc-
tures

An aspect that has to be considered when representing DIs with memory structures is to
reduce the amount of memory required and to properly organize the memory structures
in order to simplify operators application.

The most trivial way of implementing deduction instances would be using an explicit
deduction tree for each of them, but to keep memory occupation within reasonable limits
it is necessary to make DIs share common parts, if any. A natural choice is to use AND-OR
trees; unfortunately, a problem arises when constraint propagation is required, as in our
case: the AND-OR trees representation assumes the OR alternatives to be independent
from one another, but that is not true if constraints propagation has to be taken into
account.

In order to continue to take advantage of the use of AND-OR trees even when con-
straint propagation has to be performed, a new memory representation has been devised
and a limitation is imposed on the possible topologies a deduction tree may assume.
In this way the sharing of similar but differently constrained parts is possible, at the
cost of some limitations on the ways deductive processes can go on. Such limitations do
not compromise integration among top-down and bottom-up activities. The allowed tree
topologies are called Canonical and the resulting DIs are called Canonical Dls.

A Canonical DI can be put into a one-to-one relation with one of its particular sub-
structures.. This _substructure, which is a one-level AND subtree, has been called the
Representative of the DI because the information provided by it is sufficient o carry out
the application of an operator on the CDI. In other words, as far as an operator applica-

4.2 Representation of Syntax 143

tion is involved, we can use the Representatives instead of the whole CDI. Representatives
are implemented by a memory structure called Phrase Hypothesis.

Section 4.6 describes these problems and, in addition, the application of the operators
on the memory structures is illustrated in detail.

4.1.7 Implementation, Development System and Results

SUSY was first implemented on a Symbolics 3600 Lisp Machine using the Common Lisp
language; later on it was implemented into the C language on a SUN. A suitable Devel-
opment System has also been implemented, to provide a flexible and comfortable envi-
ronments to work with. The Development System permits a comfortable development of
the required algorithms and, thanks to its special purpose debugger, their relatively easy
debug and modification. The Development System has also proved very useful for the
insertion of the knowledge bases into the system. Section 4.8 provides a brief description
of the experimental results.

4.2 Representation of Syntax

4.2.1 Introduction

Syntactic and semantic knowledge has often been viewed in a speech understanding sys-
tem as a set of constraints for improving the recognition activity. Thus this knowledge
has been completely integrated within the recognition algorithms, which are mainly in-
volved in statistical/phonetic processing of input signal. For this reason the syntactic and
semantic knowledge involved has often been quite simple and not sufficiently flexible and
linguistically powerful (e.g. semantic grammars, often finite state automata). As already
discussed in Sect. 4.1, we wanted to move in a different way, taking more into account
the natural language understanding aspects in the case of speech too.

In SUSY a domain independent speech recognition activity is followed by a syntactic
and semantic based understanding activity. The latter activity is performed by a natural
language processing system that is able to deal with a lattice of lexical hypotheses, that
is, the output that a recognition stage can give using only phonetical-lexical knowledge.

The syntactic and semantic knowledge bases of this natural language understanding
system must be flexible, i.e. easy to maintain, modify and expand; and linguistically
powerful enough. Since they are used in a system that deals with a highly ambiguous
input, they must be sufficiently tight and exploit those constraints (syntactic, semantic
and agreement constraints) which can make easier the recognition and the understanding
of the uttered sentence. The claim for flexibility has been satisfied by employing separated
syntactic and semantic knowledge bases. This way, it is possible to better exploit specific
representations that address respectively syntax and semantics, and ease of maintenance
is insured because, if for example the semantic domain has to be changed or modified,
little or no modification is required for the syntactic knowledge base.

Syntactic knowledge uses the dependency grammar formalism [20, 7] augmented with
morphological agreement rules. Following the semantic caseframe paradigm [11], the
semantic knowledge is represented through conceptual graphs [37] representing semantic

144 4 The Understanding Algorithms

caseframes. Although these knowledge bases are utilized in a speech understanding con-
text, they are general and can be used by any natural language understanding system,
e.g. for written language processing.

The two knowledge bases are seen as independent sources of knowledge; on the other
hand, for the sake of efficiency, it is necessary to use both syntactic and semantic con-
straints during the parsing process. To obtain this result, the dependency grammar rules
and the conceptual graphs are compiled off line into a set of Knowledge Sources. To make
the off-line compiler work properly, a further source of knowledge had to be introduced.
This type of knowledge describes the relations between syntax and semantics and it is
sometimes called mapping knowledge.

4.2.2 Interaction Between Syntactic and Semantic Knowledge

A basic decision that has been taken from the beginning and that we think to be very
crucial in developing a speech understanding system is the possibility of defining syntactic
and semantic knowledge as two independent activities. Of course this is a goal that can not
be achieved completely: there is no clearly defined division between syntax and semantics.
In addition, there is the problem of efficiency for the parsing algorithms: in the context
of speech (i.e. when the parser must operate on a lattice of word hypotheses) it becomes
highly inefficient to perform a syntactic analysis first and a semantic validation afterwards.
That means that syntax and semantics must interact tightly at processing time in order
to exploit the constraints as soon as possible.

The possibility of defining syntactic knowledge and semantic knowledge as two inde-
pendent activities is important because it reduces the effort required to adapt a given
understanding system to a new semantic domain. In fact the use of a semantic grammar,
where syntax and semantics are melted together, requires a complete redefinition of all
the rules (usually context-free rules) that constitute the knowledge base of the system; in
addition the number of rules could be very large if a broad coverage is required.

When syntactic and semantic knowledge are declared separately, there is the above
mentioned problem of making syntax and semantics interact in a way suitable to reduce
the search activity by best exploiting constraints. A possible solution could be to make
this interaction to happen at processing time [6] while another possibility is based on a
certain amount of compilation (or merge) of the two different kinds of knowledge into a
unique structure [39].

An important problem that has to be faced in both cases is the need of knowledge
about the relationships between the syntactic structures and the semantic ones. Either
implicitly or explicitly such knowledge must be used to properly constrain the search
using both kinds of information together. This knowledge is called mapping knowledge
in the sense that it represents a kind of mapping between syntax and semantics [8].
Mapping knowledge will be described in Sect. 4.4 devoted to illustrate the compilation
of conceptual graphs and dependency rules into knowledge sources.

Let us now summarize the basic points concerning knowledge representation and pars-
ing:

¢ Different representation formalisms are used for syntax and for semantics.

4.2 Representation of Syntax 145

e The syntactic formalism is a dependency grammar augmented with morphological
agreement rules.

e The structure that is used at processing time (called the knowledge source, KS)
must contain both syntactic and semantic knowledge. '

e At processing time syntactic and semantic constraints are exploited simultaneously:
i.e. the generated hypotheses must be syntactically and semantically correct.

e Knowledge sources must permit the probabilistic control strategy outlined in the
summary and described in detail in the following sections.

The remaining part of Sect. 4.2 will be devoted to describing syntactic knowledge
while following sections will illustrate semantic knowledge and the off-line compilation
process.

4.2.3 Dependency Grammar
Definitions

Let us consider a dictionary V; each word of the dictionary is characterized by a lexical
category. Let C be the set of these categories. We define a Dependency Grammar (DG)
to be the couple

DG = {C, R}

where C is the set of lexical categories and R is a set of rules of the kind:
XO = Xle...Xk * Xk+1~--Xn with X,' € C;n >0

where X, is called the governor and X, ..., X, are called dependents of the governor X,.
The symbol * shows the governor position with respect to its dependents. The ordered
sequence X1, ..., X; is made up of left dependents while X1, ..., X, is made up of right
dependents.

The subset R, of R includes the rules of the kind

X;I*

These rules are called terminal rules because their governors have no dependents.
The result of parsing a sentence using this grammar model is a set of dependency
trees. They have the following features:

¢ Each node of the tree (not only the leaves) is associated with a word of the input
sentence.

e The sons of any subtree root are divided into two ordered sets called left and right
dependents.

e The input sentence can be obtained by projecting the nodes of the dependency tree,
that.is, visiting it.in symmetric.order (left subtrees, root, right subtrees)

e The root of the dependency tree is the governor of the sentence.

146 4 The Understanding Algorithms

An example

Let us consider
a) the lexical categories:

(English Translation)

VERB = {vide} saw

NOTUN = {battello, binocolo} boat, binoculars
ART = {un, il} a, the

PREP = {con} with
PROPER-NOUN = {Giovanni} John

ADJ = {grosso} big

b) the rules:

1) VERB = PROPER-NOUN * NOUN NOUN
2) NOUN = ART ADJ *
3) NOUN = PREP ART *

4) ART = *
5) ADJ = *
6) PREP = *

Then the sentence:

Giovanni vide un grosso battello con il binocolo

(John saw a big boat with the binoculars)

can be generated (and therefore be parsed) by applying the rules shown in Fig. 4.3.

Relations between dependency grammar and context-free grammar

A dependency grammar (DG) is equivalent to a context-free grammar (CFG) with word
dependency information attached to each production. That is, the right-hand side of
each rule of the grammar must have a “distinguished symbol” that plays the role of main
symbol. The governor of the phrase associated with that rule is the governor of the phrase
that is associated with the distinguished symbol. All other words that are part of the
phrase associated with the production are dependents, at some level, of this governor. The
example in Fig. 4.4 intuitively shows the correspondence between the two formalisms.

Remarks on dependency grammars

The DG follows the Head-Modifier linguistic paradigm. According with this paradigm
each phrase is made up of a main word (Head) and some other words relating to the head
which modify its role (Modifiers). Recursively the main head modifiers of a sentence will
be, in their turn, heads of component phrases, and so on. The linear structure of the
input sentence can be delinearized into a head-modifiers tree (dependency tree).

This general paradigm can be interpreted in many ways: for example from a syntactic
point of view heads and modifiers can be defined on the grounds of syntax; from a semantic
point of view concepts can be thought as modified by other concepts.

4.2 Representation of Syntax 147

VERB VERB

T AN TN

PROPER- NOUN NOUN NOUN PROPER-NOUN NOUN NOUN

/]

ART ADJ
VERB
(saw)
VERB
3)
> 45)6)
ey R e PROPER-NOUN NOUN NOUN
PROPER-NOUN NOUN NOUN John) (boat) (binoculars)

v 4

(the) (big) (with) (the)

Figure 4.3: Example of dependency parse tree

GRAMMAR RULES (*) :
<VERB>:= EATS
<S>:= <MP><VP> <NOUN>:= CAT | MOUSE
<NP>:= <ART><ADJ><NQUN> <ART>:= THE
<VP>:= <VERB><MP> <ADJ>:= BIG
<NP>:= <ART><NOUN>
(*) THE DISTINGUISHED SYMBOLS
ARE UNDERLINED
PARSE TREE:
4---_
<NP>“ L <VP> -
\
AY
\
<ART> <ADJ> <NOUN> \ 'I <VERB> MP Y~
1
I l l /' '
the big cat -~ N eats
<ART> <NOUN> \
i
[}
7/
tho mouse

Figure 4.4: Correspondence between dependency and context-free parse trees

148 4 The Understanding Algorithms

The most interesting feature of DG is the concept of governor (head): every phrase
parsed using a DG must include a word with the role of head; if this word is not found,
the phrase is not recognizable by the DG. This feature can be exploited when a parsing
strategy operating on complex inputs is required, as in the case of speech, where a lattice
of word hypotheses all over the utterance constitutes the system input. This feature of the
dependency grammar formalism is the main reason why this formalism has been selected
among others for continuous speech parsing. In fact it allows the generation of expec-
tations even at the highest levels, starting from word hypotheses with good score. This
point will be illustrated in detail during the description of the parsing control strategy.

The problem of finding a dependency tree on a sentence segment can be reduced to
three subproblems:

1. finding the governor;
2. finding the left subtrees;
3. finding the right subtrees.

The problem of finding the governor is primitive and can be solved simply by searching
in the input words. Of course, if that problem is not solved (that is, there is no proper
governor), it is worthless to go on with the others. Thus the need to find a governor
can give a useful heuristic for cutting down at every step the search activity required for
sentence parsing.

4.2.4 Morphological Agreement Rules

The standard dependency grammar model does not allow us to constrain the generation of
dependency trees on the grounds of morphological agreement. In fact, dependency rules
consider only lexical categories and do not take into account the morphological variables
(e.g. person, number, gender, etc.). For example, the rule

VERB = ART ADJ NOUN * ART ADJ NOUN

allows the recognition of the sentence: “Il grossi gatta cacciano i piccola topi” (“The
big cat chase the small mice”), that is incorrect from the point of view of morphological
agreement (notice that in the Italian version of the example the mistake is much more
evident).

In the case of natural language parsing this fact does not necessary constitute a
problem: the purpose is to understand, not to check the syntactic correctness of the
sentence. But morphological agreement represents additional constraints in the case of
speech understanding to reduce the amount of parsing activity. In fact, by exploiting
morphological agreement constraints, the possible combinations of words can be reduced.
Dependency rules should then be augmented with some mechanisms for morphological
agreement. We define these mechanisms as agreement rules. These rules are associated
1:1 with the dependency rules. Then, if a dependency grammar DG generates the language
L, the same grammar augmented with a set of agreement rules C, DG¢, will generate a
language L¢, with L¢ included in L.

4.2 Representation of Syntax 149

Structure of agreement rules

Let us describe the structure of the agreement rules that augment the dependency rules.
Each agreement rule relates to a dependency rule. To each element (governor or depen-
dent) of the dependency rule (lexical category) is associated a set of agreement constraint
conditions pertaining to morphologic features meaningful for that element. For every
feature the constraints can be:

1. Constant constraints, e.g. GENDER = MASCULINE
2. Variable constraints, e.g. GENDER = 7X

As natural language is characterized by phenomena of agreement between words that are
not close in the sentence, certain feature values can be transmitted from the governor
to dependents and viceversa. The set of features that can be transmitted is defined a
priori. It is then necessary to decide which information of the governor can be useful for
an agreement check at a superior or inferior level. This information must be transmitted
backward or forward in the dependency tree.

Definition of agreement rules

Let us consider a dictionary V. Let M be the set of morphological variables for the words
of V. Every morphological variable z € M has values in a set Z; (E.g. if z = NUMBER
then Z; = SINGULAR,PLURAL).

Given a dependency rule DR

Xo=X1.. Xp % Xppyg... X
an associated agreement rule RC is an ordered n+1-tuple
RC = (CM,,CM,,....CM,)
where CM; is an agreement condition set referring to X; and is defined in the following

way:

CM;=VM;,..,.VM,

where VM, is an agreement condition.
Agreement conditions are couples of the kind:

VM]‘ = (z, A)
where:
e z € M is a morphological variable (e.g. GENDER, NUMBER, etc.)

e A can be either a variable (taking values in Z), or a subset of Z. (Z is the range of

z).

For example: the following couple dependency rule / agreement rule (DR1, RC1)

150 4 The Understanding Algorithms
DR1: VERB = ART ADJ NOUN * ART ADJ NOUN

ARl: VERB: PERSON = 3, NUMBER = 7X
ART: NUMBER = 7X, GENDER = 7Y
ADJ: NUMBER = ?X, GENDER = 7Y
NOUN: NUMBER = 7X, GENDER = 7Y
ART: NUMBER = 7Z, GENDER = ?W
ADJ: NUMBER = ?Z, GENDER = "W
NOUN: NUMBER = ?7Z, GENDER = "W

allows the generation of the sentences of the kind of “Il grosso gatto caccia il piccolo topo”
(“The big cat chases the small mouse”) but not sentences of the kind of “Il grossi gatta
cacciano i piccola topi” (“The big cat chase the small mice”) that would be accepted
without the agreement constraints. In fact the agreement rule AR1 imposes the following
agreement constraints:

¢ number agreement among the governor (VERB) and the left dependents (ART,
NOUN, ADJ);

o gender agreement among the left dependents;
e gender and number agreement among the right dependents.

Notice that Italian is richer than English in variations due to gender, number, person,
etc. In the above example all the words of the sentence (nouns, adjectives, articles, verb)
are involved in morphological agreement.

Morphological agreement checks

The syntactic analysis based on the dependency rules makes use of the lexical categories
associated with each word. For checking morphological agreement we have to consider
morphological information (features). These features are:

1. statically associated with dictionary words

2. dynamically associated with every word W (having a governor role) involved in the
syntactic analysis and transmitted forward to word W from its possible governor or
transmitted backward to word W from its possible dependents.

Morphological features statically associated to words

The agreement mechanism is essentially based on the morphological information statically
associated to dictionary words. To each word in the dictionary is associated a set of
morphological features:

IM = {im;,im,,...,im,}

Every feature :m; is a couple

im; = [Feature, Values]

4.3 Representation of Semantics 151

made up by a morphological variable and by finite set of values for that variable.

Each “value” represents a plausible value for the feature in question. For instance a
word whose gender can be either MASCULINE or FEMININE can be characterized by:
[(GENDER = (MASC, FEM)).

Agreement check modalities

Let us consider the rule:

A =258, ... ,Be * Bi,... ,B, dependency rule
| | | l l
|

| | | l
SA SB; SB; SBry1 SB, agreement rule

The dependency rule can pass the agreement check if two kinds of checks succeed:
1. Constant checks on the governor and on every dependent;

2. Variable checks between every dependent Bk and the governor A.

4.3 Representation of Semantics

4.3.1 Introduction

Semantic analysis is based on the use of caseframes represented as conceptual graphs [37].
In a first phase a different organization had been used. The present approach is based on
an automatic off-line compilation of dependency rules and conceptual graphs into knowl-
edge sources that satisfies the basic requirement of permitting an efficient control strategy.
The use of conceptual graphs as a starting formalism to represent semantic knowledge
about both words in the domain and internal meaning of utterances is presented.

4.3.2 'Word Information in the Dictionary

A word in the dictionary can present two different kinds of ambiguity:

1. Morphological ambiguity - A word can have more than one possible morphological
class. For instance the Italian word abito can be either a noun or a verb (according
to the English translations “suit” and “to live”)

2. Semantic ambiguity - A word can have different possible meanings. For instance the
italian,word.cane can be either.an animal (dog) or one part of a rifle (cock). The
different meanings can refer to words with the same morphological category (as in
this example) or not.

152 4 The Understanding Algorithms

WORD

-

Morphological-class- 1 Morphological-class- n

Meaning ! _____ Meaning :..1 Meaning § _____ Meaning &n

Figure 4.5: Hierarchical structure of lexical and semantic alternative word meanings

The semantic knowledge in the dictionary is organized in the hierarchical way shown in
Fig. 4.5.

The semantic information associated with a word consists in a pointer to a conceptual
graph representing the word “meaning” within the chosen domain. A referent is also
present if the word represents some specific individual. If a word has more than one
meaning in the domain, more than one conceptual graph pointer is inserted into the
dictionary.

4.3.3 Caseframes and Conceptual Graphs

The central notion of caseframe is the the idea of a head concept, usually associated to
a word, that is modified by a set of related concepts. Each of these modifiers plays a
certain role (case) with respect to the head concept. Let us consider for instance the
concept bagnare ("to wash”). Within natural language sentences such head concepts can
be modified by cases. Among them: the agent of the action (AGNT), the object of the
action (OBJ), the possible location (LOC), when the action takes (took) place (TIME),
etc. The fillers of the cases are different concept types: the AGNT and OBJ should be
generic entities having certain characteristics: the AGNT must be able to “wash” the
object. Certain cases could be missing when uttering a sentence, like the TIME case.

The formalism chosen to represent caseframes is the Conceptual Graphs (CG) for-
malism [37], modified in such a way to fulfill our needs. Conceptual graphs are bipartite
oriented graphs with two types of nodes: concepts and relations.

Concept nodes represent entities, actions or states that can be described in a natural
language sentence. They correspond to intensional concepts that are connoted by words
of the sentence. A concept is characterized by a Conceptual Type (Type in short) and
by a referent (optional) that, if present, represents the element of the extension the node
refers to. If the concept node represents a generic individual such a referent is missing.
For instance an unspecified river can be represented by a node like [river] while the Tevere

4.3 Representation of Semantics 153

is represented by [river:Tevere]. A specific river that has no name but that is not generic
can be represented as [river:#234].

Conceptual relations connect the concept nodes. From the caseframes point of view
they corresponds to the cases.

A type hierarchy is defined over the conceptual types. Such a hierarchy is a partial
order relation defined over the types. In the following, such relations will be represented
by “<=" (less general than). Given that s, t are two types, if s <=t then s is a subtype
of t while t is a supertype of s. Two operators, called minimal common supertype (mcs)
and maximal common subtype (MCS), are defined over the types. Given two types t1
and t2, if w = mcs(t1,t2), then t1 <= w, t2 <= w and there is not a Type wl different
from w such that wl <= w, t1 <= wl, t2 <= wl.

4.3.4 The use of Conceptual Graphs

Conceptual graphs are used for two purposes: internal representation of the utterance
meaning and semantic representation of the relevant concepts of the domain that can be
connotated by the words in the dictionary.

The internal representation of the utterance meaning, that has to be constructed in
order to be able to extract the data required by the utterance, is obtained starting from the
semantic representation of the words and of the domain concepts and using the syntactic
knowledge that is required to correctly connect them. Let us consider the conceptual
graphs that can be used to parse a sentence like “Dimmi le regioni bagnate dal Tevere”
(“Tell me the regions washed by the Tevere”). The graph for bagnare (to wash) is

¢ ¢ [BAGNARE] -
(agnt) -> [FIUME]
(obj) -> [REGIONE].’’

This graph means that a river (fiume) can wash (bagnare) a region (regione). Obviously
this is not the only meaning for bagnare, but the meanings that are not relevant inside the
chosen domain are not taken into account. In this case there are other possible meanings
for bagnare that are relevant for the domain: for instance a sea (mare) can wash a region
or a province. That means that other conceptual graphs involving bagnare have to be
defined to cover utterances like “Quali regioni sono bagnate dal mare Tirreno?” (“Which
regions are washed by the Tirreno sea?”). To deal with the above mentioned meaning of
bagnare, four conceptual graphs can be defined. Such graphs can be shortly represented
in the following way:

¢ ¢ [BAGNARE] -
(agnt) -> [FIUME+MARE]
(obj) -> [REGIONE+PROVINCIA].’’

Here the symbol “4-", when encountered by the conceptual graph compiler, whose goal
1s to automatically generate the KSs, causes the generation of the types fiume+mare and
regione+provincia together with the related hierarchical relations:

154 4 The Understanding Algorithms

f ‘FIUME+MARE’* > f(‘FIUME’’

' “FIUME+MARE*’ > ‘‘MARE’’

‘ ‘REGIONE+PROVINCIA’’ > ‘‘REGIONE’’

‘ ‘REGIONE+PROVINCIA’’ > ‘'PROVINCIA’’

Such implicit hierarchical relations are added to the type hierarchy defined by the person
in charge of defining the system knowledge bases. The algorithms deal directly with
implicit types (lists of user defined types). An alternative way is to define a minimal
common supertype for fiume (river) and mare (sea) as a “washing entity”.and a similar
procedure for regione (region) and provincia (province).

Conceptual graphs are also be used to represent the surface semantics of utterances.
With the term surface semantics we intend to point out that only the superficial semantic
structure of the utterance is represented. For certain domains such a representation is
sufficient to perform the activities expressed by the utterance, but for others a mapping
activity is required to map the superficial structures into deep semantic structures that
do not depend on the structure of the utterance.

4.3.5 Representation of the Utterance Meaning

As anticipated above, the utterance meaning is represented by making use of conceptual
graphs; more precisely, the utterance meaning results from the join of the conceptual
graphs that are associated with the meaningful words in the utterance. The meaning
representation for the sentence:

Quali province della Campania confinano con le regioni bagnate dal Tevere?
(Which provinces of Campania border on the regions washed by the Tevere?)

should be:

‘* [CONFINARE] -
(agnt) -> [PROVINCIA:?x]-
(part-of) -> [REGIONE:Campanial]
(with) -> [REGIONE]
(obj) <- [BAGNARE]
(agnt) -> [FIUME:Tevere].’’

To be more precise this conceptual graph is called abstraction, due to the presence of
a parameter (?x), called a formal parameter; in fact all conceptual graphs containing
parameters are called abstractions. Abstractions are equivalent to Lambda-expressions.
The denotation of an abstraction containing a parameter is the set of all the constants that
when substituted for the formal parameter make the Lambda-expression (corresponding
to the abstraction) true. In the example the denotation of the abstraction is exactly what
we are looking for, i.e. the provinces that:

4.4 The Compiler of Conceptual Graphs and Dependency Rules 155

e are part of a region having name Campania,
e border on a certain region R1,

e and region Rl is washed by a river having the name Tevere.

Such a representation can be transformed into a set of conjunctive clauses that can be
used to access the data in order to provide the answer.

From the practical point of view, it is sometimes necessary to postprocess the repre-
sentation during the answer generation process in order to give a natual language answer
tailored as far as possible to the utterance structure, and that could also require keeping
track of some morphological features of the words in the utterance.

4.4 The Compiler of Conceptual Graphs and Dependency
Rules

4.4.1 Introduction

This section discusses the integration of conceptual graphs with dependency rules. This
discussion illustrates also the mapping information that has to be provided to allow such
integration. The compilation process that generates suitable structures starting from
these representations is outlined.

4.4.2 The Use of Dependency Rules

Dependency grammars have been selected as a formalism for representing syntactic knowl-
edge for the following two main reasons:

o Dependency rules allow an easy integration of syntactic knowledge with caseframes
thanks to the similar notion of governor for the dependency rules and of header for
the caseframes.

o Each dependency rule requires the presence of a word with the governor role in order
to be activated. Consequently all the nodes of the resulting parsing tree correspond
directly to a word. That allows the creation of expectations at the highest levels in
the parsing tree and that is a basic requirement of our parsing strategy.

Let us consider as an example for the whole section the sentence
Qualy province delle Campania confinano con le regioni bagnate dal Tevere?
(Which provinces of Campania border on the regions washed by the Tevere?)

The dependency tree that corresponds to the example is depicted in Fig. 4.6. The ‘corre-
sponding dependency rules used to produce this dependency tree are:

rsi) verb = noun * noun
rs2) noun = adj * pr_noun.
rs3) pr _noun = _ prep *

rs4) noun = prep art * verb
rs5) verb E *

pr_noun

156 4 The Understanding Algorithms

CONFINANO (verb)

PROVINCE (noun) REGIONI {noun)

QUALL (ad]) CAMPANIA (pr-noun) CON LE (art) BAGNATE (verb)
(prep)

re
DELLA (prep) TEVERE (pr-noun)

/

DAL (prep)
Figure 4.6: Dependency tree for the example sentence

where the symbol * represents the governor position. The associated rules for morpho-
logical agreement check are not reported for simplicity; note that rule rs4) requires a verb
characterized by features TENSE = PAST, MODE = PARTICIPLE and others.

4.4.3 Integrating Conceptual Graphs and Dependency Rules
- the Mapping Knowledge

The basic idea is to generate off-line, starting from dependency rules and conceptual
graphs, structures (called briefly knowledge sources, KSs) suitable to allow an efficient
(for speech) parsing strategy. Particularly, the probabilistic control of the search and the
consequent integration of top-down and bottom-up activity is required.

Dependency rules are the starting point of the compiling activity. The question is:
given a dependency rule and the whole set of conceptual graphs representing the domain
knowledge, is it possible to create one or more KSs that take into account all the possible
interactions of the rule with semantic knowledge?

A basic point is that the partition of knowledge between the KSs is based on locality,
i.e. each partition is aimed to generate a certain class of constituents, not to contain a pre-
defined kind of knowledge (like a partition for syntax and a partition for semantics). Then
each KS must combine the time adjacency knowledge, the syntactic and morphological
knowledge, and finally the semantic knowledge that is necessary to handle specific classes
of sentence segments. Then, in simple words, given a dependency rule it is necessary
to generate KSs able to deal (both syntactically and semantically) with those sentence
segments that require that dependency rule.

A first simple example will be considered to clarify this idea. Let us comsider the
dependency rule:

4.4 The Compiler of Conceptual Graphs and Dependency Rules 157

rsi) verb = noun * noun

(the morphologic agreement conditions are not reported here) and the conceptual graph,
whose meaning is that a province can border on a region:

cgl) ‘‘[CONFINARE]-
(agnt) -> [PROVINCIA]
(loc) -> [REGIONE].’’

These two structures (rs1 and cgl) together, through the integration activity, could lead
to a compositional structure of the kind:

CONFINARE = PROVINCIA <header> REGIONE

but for this purpose it is necessary to know that the agent (“agnt” of the action corre-
sponds to the left dependent of syntactic rule rsl and that the “loc” case corresponds to
the right dependent of rsl.

Then there is the necessity of having additional knowledge, called “mapping” informa-
tion, that allows the correct association of semantic types to the governors and dependents
of the dependency rules.

For this purpose, each dependency rule is augmented with information about gram-
matical relations [8]. A grammatical relation is associated with each dependent Di, ac-
counting for the grammatical relation existing between the governor G and the constituent
having Di as a governor.

In the example the associated grammatical relations could be subject for the left
dependent and object for the right dependent. In addition, grammatical relations are
associated with the governor G too, accounting for the admissible grammatical relations
that can involve (in the dependent condition) the constituents having G as a governor. In
the example, governor G can be the governor of an utterance, i.e. it does not usually play
the dependent role; this fact is expressed using the special virtual grammatical relation
sent that could be imagined to depart from the header of a complete sentence. After this
augmentation, dependency rule (rs1) looks like:

rsl) verb = noun * noun
(sent) (1 subject) (1 object)

The meaning of the two ones in front of the grammatical relations will be explained
in a moment. Now the mapping knowledge associates one or more conceptual relations to
each grammatical relation, together with their directions. In the case of the example the
mapping knowledge is:

subject --> agnt+
object --> loc-

The augmentation of the dependency rule (rs1) together with this association is some-
times called mapping rule.

158 4 The Understanding Algorithms
In the mapping the “+” or “” sign at the end of a name represents the plausible
direction of the conceptual relations. A “+” sign means that the conceptual relation
is leaving the concept associated to the governor to enter the concept associated to the
dependent while a “-” sign means that it has the opposite direction. So the governor of
the dependency rule has to be associated with the header of the conceptual graph (cgl)
(confinare) and not to one of the dependents. In the example all the relations must leave
the node that corresponds to the governor.

Syntactic rule (rsl) is also characterized by the fact that the two dependents must
both be part of the same conceptual graph. This fact results from two numerical labels
“1” at the beginning of each list; they state that both dependents must be part of the
same graph. That is not always the case, as we will see in a second example.

4.4.4 Combining Different Conceptual Graphs

Given a dependency rule it is necessary to examine all the conceptual graphs of the domain
in order to consider all those that can satisfy the requirements expressed by the mapping
rule associated with that dependency rule.

For efficiency reasons it is not desirable to have a KS for each (set of) conceptual graphs
that can correspond to the selected dependency rule. So many (set of) conceptual graphs
can be grouped together to generate a single KS, and consequently a single compositional
structure. This result is obtained by making use of explicit supertypes or of implicit
supertypes (through the use of the “+” operator). Consider for example the case of two
conceptual graphs:

¢ ¢ [PROVINCIA+FIUME+LAGO] -
(part-of) -> [REGIONE].*’
¢ ¢ [ISOLA]~

(part-of) -> [MARE].’’

They state that a province is part of a region and that an island is a part of a sea. Consider
a syntactic rule and a mapping rule like:

rs2) noun = art * noun
(subject, object) (attr)
attr --> part-of+

(This rule deals with sentence segments like ... the lakes of the regions [that] ...”..
The.resulting compositional structure could be:

ISOLA+PROVINCIA+FIUME+LAGO = J <header> MARE+REGIONE

4.4 The Compiler of Conceptual Graphs and Dependency Rules 159

This compositional structure does not provide sufficient constraints to semantic analysis:
in fact it is not possible for a province to be part of a sea (at least not directly in questions).
To overcome this kind of problem each KS is augmented with the whole list of conceptual
graphs that took place in the generation of the compositional structure. This list of graphs
is internally represented through suitable structures that are used at run time during the
propagation of semantic contraints.

4.4.5 A More Complete Example

It is necessary to explain that the governor does not need to correspond to the header of
conceptual graphs; in the case of the previous example the header does correspond to the
governor but this is not always the case; this new example describes this situation. Now
let us consider the syntactic rule:

rs2) noun = prep art * verb

characterized by the following restrictions on morphological features (now they are essen-
tial to explain the example):

NOUN: gen = ?x; num = 7y;

PREP: type = simple;

ART: gen = ?x; num = 7y

VERB: mode = partic.; tense = past; gen = ?x; num = ?y;

and the conceptunal graph saying that rivers wash regions:

¢ ¢ [BAGNARE] -
(agnt) -> [FIUME]
(obj) -> [REGIONE].’’

«

The above mentioned dependency rule takes into account sentence segments like: “... con
le regioni bagnate dal Tevere” (“... with the regions washed by Tevere”.. Now these two
structures together should lead, through integration, to a compositional structure like:

REGIONE = <header> BAGNARE
and the mapping rule could be:
noun = prep art * verb

(object) (agnt-compl)

agnt-compl --> obj-
object -=> loc

160 4 The Understanding Algorithms

This rule states that in the case of a syntactic structure of a noun modified by a relative
clause, the relative clause could be the object (“obj”) as in the example. Now the relation
is exiting from the concept corresponding to the dependent and coming into the concept
corresponding to the governor.

The restrictions imposed on the verb features by the dependency rule are essential. In
fact, in the case of a relative clause having finite mode (like indicative mode and present
tense), the conceptual relation involved could be “agnt”, as in sentence segments like: “...
con i fiumi che bagnano ...” (“... with the rivers that wash ...”).

The relation “loc” that results on the left side of the mapping rule represents one of
the possible semantic relations that the sentence segment treated by the rule can have
with respect to a higher level constituent. The relations on the left side are simply used
during the parsing process to check that only admissible connections are performed. When
the sentence segment “con le regioni bagnate dal Tevere” is generated only the semantic
relations on the left of the mapping rule (“loc” in our case) are permitted to be used to
connect this segment to another possible supersegment, like our sentence.

4.5 Parsing - Conceptual Level

4.5.1 Introduction

The input structure of the understanding level is a lattice of word hypotheses, i.e. a set
of hypotheses about words characterized by the following information:

1. Hypothesized word,
2. Time interval of the word instance,

3. Score.

Two are the objectives of the understanding process: to complete the recognition activity
and to understand the meaning of the utterance.

From one side the understanding level must complete the recognition process. It has
to detect a sequence of word hypotheses in the lattice such that the following requirements
are satisfied:

1. The word sequence must be both syntactically and semantically correct, i.e., more
precisely, it must be compatible with the system knowledge about the language and
about the application domain.

2. The word hypotheses of the sequence should cover exactly the time interval of the
uttered sentence. Ideally, they should not overlap and no gaps among them should
exist. From a practical point of view, due to uncertainties in word spotting, a
certain number of overlaps and gaps between adjacent word hypotheses normally
exist and must be considered. Thresholds can be used to define the accepted level
of imprecision.

3. Among all the sequences of word hypotheses that satisfy points 1 and 2, the sequence
with the best word hypotheses (the word hypotheses with the best scores) should
be preferred. For this purpose a score can be assigned to a solution starting from
the scores of the word hypotheses involved.

4.5 Parsing - Conceptual Level 161

From the other side the system has to understand the meaning (in the fixed domain) of
such word sequence, that is, to generate a formal representation of the meaning itself.
From that representation the system will be able to perform the activity requested by the
utterance (in our case the extraction of the desired information from a data base).

Both objectives imply the use of syntactic and semantic knowledge. For the first
objective (to complete recognition), that knowledge is used as a source of constraints to
solve the uncertainties that still remain after the recognition level has used phonetic and
acoustic knowledge to perform the first part of the recognition activity. For the second
objective, syntactic and semantic knowledge is used to generate the meaning of a word
sequence in the same way used by natural language interfaces. Within natural language
interfaces syntactic and semantic knowledge has to be expressed in a declarative way; in
addition the process that uses that knowledge is usually non-deterministic (i.e. a search
activity is required).

Our aim is to perform these two activities in an integrated way: only one declarative
representation of syntactic and semantic knowledge is given to the system and it is used
for both objectives; in addition the two activities are completely merged.

4.5.2 Lexical Component and Model Component

The “solution”, that is, the sequence of word hypotheses that has to be selected as the
correct one, must satisfy constraints of many different kinds. These constraints express
two different types of knowledge. First, there is the knowledge that refers to the word
hypotheses by themselves: time interval and score. This kind of knowledge is used to verify
the conditions outlined by previous points 2 and 3 (i.e. to have a temporally acceptable
solution with the best overall score). Second, there is the knowledge about the language
and the application domain. This knowledge is used to satisfy the conditions requested
by point 1 (i.e. to guarantee the syntactic and semantic correctness of the solution).

We refer to these two kinds of knowledge as the lexical component and the model
component respectively. The two components must cooperate, and indeed the system
uses them in a joint way. Notwithstanding this, we believe that it is reasonable to keep a
clear distinction between them, at least for descriptive purposes. In fact, not only different
techniques are employed in order to exploit the different constraints pertaining to the two
components, but they have different goals. The task of the lexical component would be
to put together word hypotheses into “chunks” so that time constraints are satisfied, and
its ultimate goal is to reach a solution having a good score without having to combine
too many word hypotheses. It is not per se concerned with the problem of checking the
syntactic and semantic correctness of the chunks it is getting through. Conversely, the
goal of the model component is to put together word hypotheses according to a model
of the language and of the application domain, until a syntactically and semantically
acceptable solution is found.

The correct sequence of word hypotheses has to satisfy the constraints pertaining to
both components, and they can play different roles in different approaches to the problem.
In the next section the importance of using scores to guide the search is outlined.

162 4 The Understanding Algorithms

4.5.3 Importance of a Score Guided Search

When the lattice generated by the recognition level contains many word hypotheses (of
the order of a hundred times the number of actually uttered words) and when the model
of the language and application domain are not limited to toy examples, then the analysis
techniques have to use the scores associated with the word hypotheses to guide the search.
In other words it is not possible to have an analysis mechanism that tries first to recognize
all of the possible sequences of word hypotheses (i.e. that satisfy all the constraints) and
that afterwards considers their scores for the selection of the best sequence. In fact the
amount of search that would be necessary to detect all of the possible sequences of word
hypotheses is extremely high, since the non-determinism of syntactic/semantic knowledge
is added to input uncertainty: the presence of many word hypotheses instead of a few
words.

The search has to be directed towards the best sequences from the very beginning,
and only a small part of the implicit search space should be examined. The search should
then start from the best word hypotheses, should be directed by the scores of the word
hypothesis sequences and should stop when an acceptable solution has been detected (i.e
the probability of finding better solutions by continuing the analysis is sufficiently low).
Starting from this assumption, many different approaches to the problem are still possible.

4.5.4 Search from the Point of View of the Lexical Component

From the point of view of the lexical component, the main objective of the analysis is
to start from the best word hypotheses and to expand them with other word hypotheses
until an agglomerate covering exactly the whole utterance time interval is generated. New
agglomerates can be obtained either by adding new word hypotheses to old agglomerates
or by joining together old agglomerates. As a special case an agglomerate can be a
sequence of adjacent word hypotheses (the term adjacent is used taking the gaps and
overlapping thresholds into account) but in general word hypotheses do not need to be
adjacent. ‘

Each agglomerate is characterized by a quality factor. A quality factor is assigned
starting from the scores and time intervals of the word hypotheses making up the agglom-
erate. The quality factor constitutes an evaluation of the probability that the set of word
hypotheses is actually present in the uttered sentence. Details of the ways this quality
factor can be obtained are not included in this section.

Control strategy of the lexical component

The basic control cycle consists in selecting the best agglomerate (the term “agglomerate”
includes a single word hypothesis as a special case) and processing it to generate new
agglomerates. Only the agglomerate with the best quality factor is selected at every
control cycle. The selected agglomerate can generate new agglomerates either by having
a new word hypothesis added to it or by being joined with other agglomerates. A quality
factor is then assigned to them and the control cycle is repeated.

What is really done starting from the selected agglomerate depends on the search
performed at the model component. In fact the selected agglomerate can only be expanded
in a way consistent with the syntactic and semantic knowledge of the model level. Note

4.5 Parsing - Conceptual Level 163

that at the beginning there are only word hypotheses: a special case of agglomerates.
Section 4.5.10 will illustrate the control strategy of SUSY.

4.5.5 Relations with the Model Component

If the lexical component takes control of the parsing process in this way, there would be the
problem of validating the agglomerates from the point of view of the model component: if
an agglomerate does not satisfy syntactic and semantic constraints it has to be eliminated
(or still better, it should not be constructed).

A selected Island is expanded in all the possible ways to find adjacent (on the left
or on the right) word hypotheses and the model component is used to validate them. In
other words, the phrase hypotheses generation follows left or right expansion and there is
no attempt to follow the model: time adjacency is guiding the search, not grammar rules.

The verification of an agglomerate of word hypotheses requires inferences at the model
level, and efficiency considerations suggest the use of model knowledge to decide which
agglomerates are worthwhile trying to generate (use of syntactic/semantic predictions).
In SUSY the model component does not have a slave role, i.e. it is not used just to
verify the correctness of the agglomerates that are going to be generated on grounds of
time adjacency. Instead it has a key role in deciding the direction of expansion of an
agglomerate and can override the time adjacency criterion, leading to the presence of
“holes” within an agglomerate (i.e. an agglomerate is not necessarily a sequence of words,
so agglomerates are not like Islands in [42]).

To be consistent as far as possible with the lexical component point of view it is
necessary for the model component to be able to generate internal structures (complete
and incomplete constituents) that can be associated with agglomerates (i.e. set of word
hypotheses). Such internal structures, completely validated by both the components, have
a quality factor (the quality factor of the agglomerate) and a precise syntactic/semantic
characterization. They are called phrase hypotheses in the following, until a more precise
definition is given in Sect. 4.5.8. The quality factor of a phrase hypothesis (as well as the
score of a word hypothesis) will be taken into account by a control strategy derived from
a refinement of the “naive” control strategy of the lexical component.

4.5.6 Relations with some Former Systems

Our main effort has been to adapt the basic ideas of chart parsing to the peculiarities of
continuous speech: mainly the large search space involved. The system that has given us
some good ideas about an effective and efficient way of controlling the search was HWIM.
The final system is very different from it, expecially when the representation and use of
syntactic knowledge is concerned, but nevertheless it does share a few commonalities.
An idea shared with HWIM and other systems is that constraints pertaining to the
two components have to be used in a joint way during the analysis. Another common
point is the conceptual idea that a solution can be obtained by formulating hypotheses,
each of them validated by the presence of a set of word hypotheses satisfying all the
possible constraints (to be more precise, that there are no evidence of constraints not
satisfied). Hypotheses can be lexpanded, two hypotheses can be joined together, etc.,

164 4 The Understanding Algorithms

until a hypothesis is based on word hypotheses covering the time interval of the whole
utterance.

The HWIM system considers central the role of the lexical component to formulate
hypotheses, while the model component is mainly used in a passive way to check the cor-
rectness of these hypotheses. In SUSY, phrase hypotheses are formulated on the grounds
of linguistic knowledge; the time intervals of the word hypotheses are still checked every
time a new word hypothesis becomes part of a phrase hypothesis but time intervals do
not guide the search. In this respect, our approach shows some similarities with Hearsay’s
[10], though, unlike Hearsay, we stress the importance of a formal control as a means to
cut down the search and to avoid the generation of incorrect solutions.

Another significant difference between our system and HWIM concerns the structure
of the phrase hypotheses. HWIM always expands a phrase hypothesis either on the left
or on the right, then the result is that hypotheses are “islands”, i.e. sequences of adjacent
words. In SUSY the word hypotheses supporting the phrase hypotheses are not necessarily
adjacent.

4.5.7 The Model Component

We have seen that syntactic and semantic knowledge is represented, after the compilation
phase, by knowledge sources (KSs). Now let us see the knowledge sources at the lowest
level of detail, at what is necessary to describe the control strategy in a precise way. Each
KS is characterized by a number of slots: one of them is called the header and has to
be filled by a suitable word while the others are called filler slots and have to be filled
either by words or by phrase hypotheses provided by other KSs. A slot of a KS is called
terminal if it has to be filled by a word, while it is called non-terminal if it has to be filled
by the results provided by other KSs. Then the header slot is terminal while the filler slots
can be either terminal or non-terminal. The parsing process consists in the generation of
phrase hypotheses that result from the activity of filling the slots of the KSs.

A simplified view: the problem solving paradigm

Just for generality and for the sake of simplifying the control strategy description, we are
going to describe the parsing process as a problem solving task: the problem P of filling
completely a KS (i.e. of generating a phrase hypothesis by such KS) can be decomposed
into the subproblem P* of filling the header slot and into the subproblems P1, ..., Pn of
filling the filler slots, if any.

This fact can be written as: P := Ph, P1, ... , Pn.

Of course, for what we have seen, the subproblems are not at all independent one
from the others: constraints of morphological, syntactic and semantic nature need to be
propagated and controlled each time a subproblem has to be solved. In addition temporal
constraints have also to be propagated and verified because header and filler slots must
follow the pattern of adjacency of the KS.

Thanks to this generalization, the abstract description of the control strategy we are
going to describe can be applied not only to spech but also to other signal understanding
fields (like sonar, vision, etc.). As the constraint propagation and control techniques are
specific to the application field |(speech, vision, ...) we will describe the control strategy

4.5 Parsing - Conceptual Level 165

without taking them into account here: in other words the description is simplified as far
as possible to make it clearer.

The knowledge source partition

From now on the problem solving structure of a KS is abstractly represented in the form:
1)C:=C1,0C2, ..., Cn.

where the meaning is: in order to classify a certain word sequence as being of class C
(the class of constituents detected by the KS) it is necessary to classify n word sequences
as being of class C1, C2, ... , Cn. Some of such sequences will be constituted by just
one word (header or terminal fillers) while others will have to be classified by other KSs
(which have their own problem-solving structure).

Now it is necessary to spend a few words about what the Ci classes are. When.a
KS wants to fill one of its non-terminal filler slots, it is necessary to activate some other
KSs (or even itself, recursively). Which other KSs have to be involved in this task? The
answer to this question requires a static (off-line) partition of the KSs into classes. Such
a partition takes into account both syntactic and semantic knowledge and is performed
off-line by putting into the same class those KSs that contribute to detecting similar
constituents. Coming back to the symbols in 1), they refer to two types of classes: omne
type, called a terminal symbolis used to indicate terminal problems, i.e. sets of words that
can solve the subproblem, like the subproblem of filling the header slot. The other type,
called non-terminal symbol corresponds to the classes of the previously mentioned KS
partition. While terminal symbols can be matched directly against the word hypotheses,
the non-terminal symbols require the KS activity.

As far as the second type is concerned, what it is really relevant here is that:

1. Given a class Ci it is possible to know which KSs are of that class, i.e. can classify
word sequences as members of the class.

2. Given a class Ci it is possible to know which KSs have non-terminal fillers slots of
that class, i.e. can use a word sequence of class Ci to fill one of their non-terminal
filler slots.

Knowledge sources, facts and goals

This aspect corresponds more or less to the forward and backward control activity in a
problem solving system.

We use the term fact to indicate an instance of a KS whose slots have been completely
filled. Every fact has an associated symbol (class): in the simplified view the only way to
obtain a fact of class C is to apply a KS of class C.

A XS is called terminal if it has only terminal slots: it relies only on terminal symbols.
A terminal KS can be applied considering only the word hypotheses. In our case a KS
contains at least one terminal symbol: the symbol C* that represents the header slot.
Non-terminal KSs rely at least on a non terminal symbol; C* is the most important
concept while the others act as modifiers.

If KSs are only applied forward, then only facts are generated during the search
activity. But if they also run backwards, then goals have to be dealt with too. In

166 4 The Understanding Algorithms

our approach the presence of a “best first” search that considers the scores of the word
hypotheses requires the presence of both search strategies and a complete step-by-step
integration among them. By now for goal of class C we mean simply the objective of
finding out one (or more) facts of class C. A goal can then be represented by a complete
description of the constraints that those facts have to satisfy. The next section will define
the deduction instances {DIs) and their use as basic items for the control of the search
activity. The definition of DIs is necessary in order to better understand the relations
among goals and facts and their roles in a real best first search.

4.5.8 Deduction Instances

We have seen that the activity of finding a solution can be viewed as a search process.
The part of the implicit search space that is being incrementally explicited could then be
represented as an OR tree of nodes. These nodes are called Deduction Instances (DIs).
Each node represents an intermediate step of a deductive process possibly leading to a
solution. Each DI can be represented by an AND tree, called a deduction tree, whose
nodes can be facts or subgoals. A deduction tree corresponds roughly to a parse tree in
the case of speech; more precisely a parse tree corresponds to a DI which is a fact. In the
case of a goal DI the parse tree has some parts missing.

In a classical goal-driven search the steps involved are decomposition of a goal into
subgoals and verification of a terminal subgoal against the input data. In the case of a
data-driven search, input data can be grouped together to form deduced facts, deduced
facts are also be grouped together to form new deduced facts and so on until a solution
is possibly reached.

Let us consider the case of a single deductive process that led to a solution. If a single
strategy (data-driven or goal-driven) is used, then, starting from an initial state, the final
state (solution) has been reached through a single path of states (DIs). In our approach
the need of a best first search requires goal-driven steps to be mixed with data-driven
steps. To allow such integration among data-driven and goal-driven activities, special
operators (called merging operators) are able to join two different paths together. In
other words two DIs can be merged to form a new DI.

Deduction instances are the basic items managed by the control strategy and concep-
tually constitute the Deduction Instances Data Base (DIDB). DIs can be grouped into
two classes: fact DIs and goal DIs. Fact DIs represent facts of a certain class (according
to the definition of Sect. 4.5.7) while goal DIs are characterized by at least one still un-
solved subgoal. One of the subgoals of a goal DI has to be defined as a Current Subgoal
(CS) when such a goal DI is inserted into the DIDB. A goal DI does not represent simply
a subgoal (the current one) but a subgoal together with its context from which linguis-
tic constraints are obtained through constraints propagation activity. In other words a
DI represents the whole deductive process leading to the current situation, not only the
description of a certain subgoal to be solved.

It is important to operate on DIs and not simply on facts and subgoals for the following
reasons:

1. The best first search requires a single state to be characterized by a priority in
order to decide, at each control cycle, what state has to be treated first (we are

4.5 Parsing - Conceptual Level 167

not interested here in what operator has to be applied first). Such priority should
not be based on heuristics but has to be the result of a domain-dependent function
applied to the word hypotheses that have supported the deductive process until now.
In other words each DI must correspond directly to an agglomerate (as introduced
in Sect. 4.5.4) and its quality factor can be used to perform the best first search
previously described.

2. The use of DIs makes simpler and more formalized the integrated search strategy:
two DIs can be merged to generate a new DI.

3. Constraint propagation activities during the deduction makes every DI extremely
specific: subgoals of the same class get different constraints when inserted in different
contexts.

We have seen that constraints coming from both the lexical and model components
are exploited during search. Then the only agglomerates that are generated are those
containing the word hypotheses on which a fact DI relies on or those that currently
support a goal DI.

The presence of a 1:1 relation between DIs and agglomerates allows the kind of control
strategy previously outlined in Sect. 4.5.4 to be applied directly on the DIs: at each control
cycle the best DI (the DI with the best quality factor, i.e. the DI that corresponds to the
agglomerate with the best quality factor) is selected and the operators are applied on it
to generate new Dls.

4.5.9 Activation: Scores and Quality Factors

Before illustrating the control strategy in a formal way it is necessary to better discuss
some conceptual points about the creation of expectations. A problem that the control
strategy has to deal with is the decision whether to continue to deal with a given DI or
to decide to try to generate new Dls starting from a certain new word hypothesis.

As each DI is supported by a given agglomerate and has a given quality factor, a
reasonable solution is to compare the quality factor of the best DI with the score of the
best (remaining) word hypothesis. To do that, the quality factor of a DI and the score of a
word hypothesis need to be comparable. In SUSY they are, as we use the density method
of combining together the scores of the word hypotheses of the agglomerate supporting
the DI.

Let us call S1, S2, ... , Sn the scores of the word hypotheses and t1, t2, ... , tn their
time intervals. Then the quality factor of a DI supported by an agglomerate of such word
hypotheses will be:

QF = (S1*1 + ... 4+ Sn*tn) / (t1 + ... + tn)

This formula shows that, if all the WHs had the same time interval, the quality factor
would have been just the mean value of their scores: QF = (S1 + ... + Sn) / n.

Given the possibility of comparing scores and quality factors, our solution is to start
a new deductive process when the score of the best remaining hypothesis in the lattice
is_better than the quality factor of the best DI produced so far. Some systems select
Just a certain number of word hypotheses as “seeds” to be used to create Islands; the
critical aspect is that the optimal number cannot be calculated in advance as it depends

168 4 The Understanding Algorithms

on the single utterance. We experimented with this strategy initially, but experiments
performed by changing the number of word hypotheses activated during the initial phase
showed that this approach was not really efficient.

This intermixed procedure, as far as we know, is original and has the great advantage
of solving a common problem: while the word hypotheses involved in the solution have,
together, an acceptable quality factor (the quality factor of the solution), there could be
just one or two uttered words that have a bad score, due, for instance, to mispronunciation,
reduced length, enviromental noise, or to a more critical acoustic model for word(s).
The reasons why this procedure, together with the other specific features of the control
strategy, can solve the above mentioned problem will be clear later on: we try now just to
give an informal justification. The word hypotheses in the lattice can be classified into two
sets: those that are used to create expectations, i.e. to generate new deductive processes,
and those that are not. By now it is sufficient to anticipate that, under certain conditions
that will be only partially fulfilled, the first set is composed of those word hypotheses that
have a score better than the solution quality factor, while those of the second set have a
score worse than the solution quality factor.

The informal conclusion is that what is really good (word hypotheses in the first set)
is used incrementally as “seeds” to generate new deductive processes, while the “garbage”
is only used during the deductive processes to expand the DIs. The process of selecting
a certain word hypothesis to start a new deductive process is called activation. The next
subsection describes such phase.

The ACTIVATION operator

The first question is: what does it mean to begin a new deductive process starting from a
word hypothesis and how is it possible to do that? We can think of an activation operator
that, starting from the word hypothesis, can generate a set of DIs. Given our KSs, the
activation of a word hypothesis means to trigger all the KSs that have a header slot that
can be filled by such word hypothesis and then to generate for each such KS a new DI,
where the header slot is filled with the word hypothesis (i.e. the DI is supported by the
word hypothesis). What it is really important, in our opionion, for a continuous speech
understanding system, is to allow such possibility: it is for this reason that a header based
knowledge representation formalism has been selected.

Let us see now the activation phase using the problem solving paradigm. Every word
hypothesis is characterized by a set of features. The activation operator, using the values
of these features, can know what terminal symbols correspond to this word hypothesis.
KSs with terminal slots corresponding to these terminal symbols are then activated and
fact or goal DIs are generated. Each DI is characterized by having that terminal subgoal
satisfied, i.e. the terminal slot filled. If the KS has only one terminal slot, then a fact DI
is generated, otherwise a goal DI is generated.

Note that in our current implementation no pure goal DIs are allowed; that means
that goal DIs have to be supported by at least one word hypothesis. This decision is due
to two main reasons:

1. A pure goal DI is not supported by any word hypothesis, so it is not possible to
assign quality factors to this kind of DIs, and no best first search can really be
performed.

4.5 Parsing - Conceptual Level 169

WH D! YES
SOLUTION SOLUTION LIST
NO
4 CURRENT Di
ACTIVATION DEDUCTION SCHEDULER OPERATORS SELECTION
& APPLICATION
N\ ﬁ
el z]].
3 2
WHDB e F 5 o
[DIDB C‘-‘"‘CE’J: =~ B 8 = 5
3 @
jf ey 7 g
QUALITY FACTOR NEW Dis
COMPUTATION
AN 1} FACT Dis

\} GOAL Dis

SUBGOAL EELEC“ON
CONSTRAINT PROPAGATION

§j

Figure 4.7: Architecture of the score-guided control strategy (DIDB = Deduction In-
stances Data Base; WHDB = Word Hypotheses Data Base). ‘

2. KSs are characterized by the header presence and the problem of finding the header
is a terminal problem. In our implementation, when a goal is decomposed into
subgoals by applying a rule, then the terminal subgoal corresponding to the header
has to be solved before other subgols of that DI can be treated.

4.5.10 Control Strategy

The control of the deductive activity is carried out by a deduction scheduler (DS, see Fig.
4.7). At each control cycle the deduction scheduler looks into the deduction instances
data base (DIDB) and into the word hypotheses data base (WHDB).

At the beginning no DIs exist in the DIDB, so they are generated starting from the
best word hypothesis through the application of the activation operator.

At each control cycle the quality factor of the best DI contained in the DIDB is
compared with the score of the best word hypothesis contained in the WHDB (lattice in
the case of speech).. The best item between these two is selected.

If the deduction scheduler selects a word hypothesis, the activation phase takes place,
generating new DIs that will be inserted into the DIDB. Otherwise, if a DI is selected, the

170 4 The Understanding Algorithms

deduction phase takes place. Five different activities are performed during the deduction
phase. The activities are:

1. Solution test: If the DI constitutes an acceptable solution it is stored in a solution
list. If the strategy is optimal the analysis can terminate. Otherwise the analysis
can go on until the resources are consumed and then the best solution is selected.
Section 4.5.11 better describes this point.

2. Operators selection and application: According to the type of the selected DI one
or more operators are applied on it, creating a set of new DIs. A description of the
possible operators and their application conditions is contained in Sect. 4.5.13.

3. Subgoal selection: A current subgoal (CS) is selected for each new goal DI. This
is obtained through the application of a subgoal selection function that can use
time adjacency considerations and heuristics derived from linguistic knowledge to
perform its task.

4. Constraint propagation: when a new goal DI is generated adding a word hypothesis
or a deduced fact to a previous goal DI, constraints are propagated inside the new DI
starting from the word hypothesis or fact. Constraints are only propagated towards
the subgoals that are likely to become the current subgoal. Constraint propagation
is quite important as it makes the subproblems description more specific. The
constraints involved are time constraints, reducing the range where word hypotheses
can be located, syntactic and morphological constraints limiting the lexical features
of the candidate word hypotheses and finally semantic constraints.

5. Quality factors computation: The function described in Sect. 4.5.9 combines the
scores of the involved word hypotheses to obtain a quality factor (QF) for the DI.
For the goal DIs only the word hypotheses that support it until now are considered.
Remember that at least one word hypothesis is always present to support a goal DI.

4.5.11 Optimality and Efficiency

The analysis strategy is characterized by optimality if the first solution S (an agglomerate
covering the whole utterance and being a plausible sentence in the given domain) selected
by the scheduler has a quality factor such that no other solutions obtainable later on by
continuing the analysis process can have a quality factor better than that of S.

If the search strategy is optimal the analysis process can stop as soon as a solution
is selected by the scheduler. Otherwise the analysis process should continue until the
resources are exhausted; at that point the solution with the better quality factor (if any)
is selected. Optimality is of course a desirable characteristic, but optimality does not
always mean efficiency: a non-optimal search strategy, making use of heuristics, can lead
to a solution with a smaller amount of search activity than that required by an optimal
search strategy. Nevertheless an at least near-optimal search strategy has to be pursued,
otherwise there are excessive risks of expanding almost all the implicit search space or of
accepting an incorrect solution.

4.5 Parsing - Conceptual Level 171

DI, DI,
\ V4
\\ Y ’
el 2N
X / OR- LINKS
AUXILIARY LINKS
DI,

i
!

'

Figure 4.8: Deduction instances and search space. Deduction instances are states of a
search spaces: in addition to the traditional OR links, auxiliary links (represented by
dotted lines) have been introduced for the application of the merge operator to a goal DI1
that involves a fact DI3

4.5.12 The search space and the specialization relation

The entire search process can be represented by a forest of OR-trees whose nodes are the
DIs and whose links (called OR-links) relate to the operators application. The activation
operator generates new OR-trees; in fact new independent deductive processes can begin
as a consequence of the activation of a word hypothesis. An OR-link connecting two DIs,
DI1 and DI2, means that an operator applied on DI1 gave DI2 as a result.

A relevant aspect is that the various trees of the forest are not completely independent
from one another. When the merge operator is applied to a certain DI1 to generate a new
DI2, a DI3 of another OR-tree has to be considered, given the intuitive meaning of the
word merge. A new kind of link (indicated with dotted lines in Fig. 4.8) is added to the
traditional OR-links: the merge operator generates a new DI that is connected both by
a traditional OR-link and by an auxziliary link. An auxiliary link going from DI3 to DI2
means that the generation of DI2 has been the result of the presence, in the DIDB, of
DI3 but that DI3 has not been the immediate cause for the generation of DI2: it is only
a precondition.

With the exclusion of the activation and prediction operators, when a new DI is gen-
erated by an operator application, one of the involved links (either OR-link or auxiliary
link) can be seen as a specialization relation between the two DIs. We say that a special-
ization relation holds between DI1 and DI2 if DI2 is more specific than DI1 and they are
connected by an OR-link or by an auxiliary link. This situation happens when DI2 has
acquired new supporting word hypotheses or because one of its non terminal subgoals has
been decomposed into subgoals in a certain way.

172 4 The Understanding Algorithms

Figure 4.9: A DI that corresponds to the application of two KSs

The prediction operator is an exception: in fact, though it generates new DIs from a
fact DI and hence can be represented by arcs in the OR search graph, it does not actually
specialize the fact DI it is applied to - indeed, a fact cannot be specialized at all, but only
inserted into a new context.

The specialization relation is treated with greater details in the following sections,
where the various operators are explained.

4.5.13 Description of the Operators

The operators applied during the deduction phase are: subgoaling, verify, prediction and
merge. When a certain DI is selected by the scheduler, one or more operators are applied
toit. Which operators are applied depends on the selected DI. In the following we describe
each operator, indicating the characteristics that the DI must have in order to apply the
operator itself. A

We recall here what was said in Sect. 4.5.7: a terminal subgoal can be directly matched
against the input data (word hypotheses in our case) and a terminal KS is characterized
only by terminal slots. By the way, we recall that in SUSY each KS is characterized by
at least one terminal slot (the one corresponding to the header).

In the figures that will be used to indicate the operators applications, the following
conventions will be applied:

1. DIs are represented by trees (AND trees) according to the problem-solving structure
of the applied KS.

2. The daughter nodes of a given root node represent the symbols of the KS filler
slots while the root itself represents the class of the KS. Figure 4.9 represents a DI
example.

3. The crossed nodes of a DI represent fact nodes while non crossed ones represent
goal nodes; if a goal node has no daughters than it has still not been expanded into
subgoals (a KS has still not applied to it).

4.5 Parsing - Conceptual Level 173

B

NDI,
SDI
WH,

B D

[of
E Je \ NDI_
———a= OR Links
:'> Specialization relation wH_

Figure 4.10: Application of the verify operator to a goal deduction instance SDI. n new
goal deduction instances are generated.

i

4

The VERIFY operator

Type of operator: MONADIC.
Starting DI: GOAL DIs with current TERMINAL subgoal.
Generated DIs: GOAL or FACT DlIs.

The vertfy operator is applied to a goal DI characterized by a terminal current subgoal
CS (see Fig. 4.10). The verify operator checks if the current terminal subgoal CS of the
selected deduction instance SDI can be solved by some of the word hypotheses in the
lattice. In the case of our knowledge representation formalism (the KSs), the terminal
subgoal is usually the problem of filling the header slot of the KS. To do so, it matches
the subgoal description of CS (resulting from the propagation of constraints from the rest
of the DI) against the word hypotheses in the lattice. Let us suppose WH1, ... , WHn
to be word hypotheses able to satisfy subgoal CS. For each of them the werify operator
generates a new DI to be inserted into the DIDB. Each of these new DIs represents a new
step of the deductive process that led to the SDI. The new DIs can be either goals or
facts. The verify operator is then working mainly at the lexical component: the new DIs
differ from SDI for having a new word hypothesis to support them in addition to those
that support SDI.

Thinking of the search space, these new DIs are directly connected by OR links to the
starting SDI. A specialization nelation exists between the SDI and each of the new Dls.

174 4 The Understanding Algorithms

SDI NDI

So WH

WH

Figure 4.11: Application of the verify operator. A “by-product” fact deduction instance,
FDI, is generated

In fact the new DIs have acquired new pieces of evidence at the word level; then a choice
has been made, making them more specific than SDI.

Another activity is also performed by the verify operator: in addition to the above
mentioned new DIs, other fact DIs can be generated (see Fig. 4.11). That happens
when the solution of the current subgoal CS leads to the generation of a new fact by the
triggered KS (i.e. when the KS can generate a new complete constituent). The new fact
from one side has been generated in the context of SDI, so it must be part of NDI, but
from the other side, it now becomes a “free” fact FDI, that could be used by other DIs or
on which it can be applied the prediction operator. Note that these additional new fact
DIs are not connected through OR-links to the starting SDI; they are connected to SDI
by an auxiliary link, as the SDI was a precondition for the generation of these new DlIs.

A fact of this kind, like FDI, is extracted from the context in which its generation
took place: its score is computed taking into account only the word hypotheses making
up the fact itself while the other word hypotheses supporting the starting SDI are not
considered.

The SUBGOALING operator

Type of operator: MONADIC.
Starting DI: GOAL DIs with current NON-TERMINAL subgoal.
Generated DIs: GOAL DlIs.

This operator is directly applied on the DI selected by the scheduler. This SDI must
be a_goal DI characterized by a non terminal current subgoal CS (see Fig. 4.12). The
‘subgoaling operator triggers all the KSs that can decompose (sub)goal CS into subgoals
(i.e. all the KSs that can hope to fill the filler slot CS); refer back to Sect. 4.5.7 if

4.5 Parsing - Conceptual Level 175

SDI NSD!

cs

NCS
Figure 4.12: Application of the subgoaling operator

necessary. For each successful application of a KS a new NSDI is generated, characterized
by subgoal CS decomposed into a set of subgoals that have (all) to be solved. In other
words, node CS in the deduction tree of NSDI is not a leaf any more but has become an
AND subtree corresponding to the problem-solving structure of the applied KS.

In regard to the search space, these new Dls are connected by OR links to the starting
SDI. There is also a specialization relation between the starting DI and each of the new
DIs. In fact the new DIs are more specific than the starting one: the current subgoal has
been decomposed in a certain fixed way and then a decision at the model level has been
taken.

The subgoaling operator works only at the model component: no word hypotheses
are taken into account during its application. An interesting consequence is that the new
Dls, generated when the subdgoaling operator is applied on a certain SDI, all have the same
quality factor as the SDI. Then they will be selected at once by the scheduler (they are
as good as the starting DI).

On these new DIs the subgoaling operator could be applied again, but this does not
happen in our implementation: it is not possibile to continue the search at the model
component without any further support from the lexical component.

What really happens in practice is now described: we have seen that when a new DI
is generated by applying the subgoaling operator on a certain SDI, the current (sub)goal
CS of SDI is decomposed into a set of subgoals. Among these subgoals there is always
at least one terminal subgoal NCS (the one related to the header slot) that is chosen as
the current one by the subgoal selection function and is immediately solved by applying
the verify operator on NSDI. Then the sequence subgoaling + verify is applied directly
to SDI without having to insert into the DIDB the new DIs obtained by the application
of the subgoaling operator alone. That is also important because often there are no word
hypotheses that can satisfy that terminal subgoal (NCS). In such case no DIs are generated
at all.

176 4 The Understanding Algorithms

NSDI

SDI

Figure 4.13: Application of the prediction operator. No specialization relation holds
between SDI and the newly generated NSDI

The PREDICTION operator

Type of operator: MONADIC.
Starting DI: FACT DlIs.
Generated DIs: GOAL DIs.

The prediction operator is applied on a selected fact deduction instance SDI. New
goal DIs are predicted starting from SDI (see Fig. 4.13). The prediction operator triggers
the KSs characterized by having SDI able to satisfy one of their filler slots. For each
applicable KS a new DI is then generated. If the triggered KS had only one non-terminal
filler slot, then a fact DI instead of a goal DI would be generated, but in our case only
goal DIs are generated, as all the KS have at least the header slot that is a non-terminal
one.

The prediction operator, as well as the subgoaling operator, works mainly on the model
component. In fact the new DIs have the same supported word hypotheses as the starting
SDL

In regard to the search space, the new DIs are connected to the SDI by OR links.
Note that there is no specialization relation between SDI and the new Dls. In fact we see
each of the new DlIs as a generalization step of the deductive process that led to SDI: a
new root goal is generated and will be treated.

From another point of view we could see the prediction operator as a way of generating
new deductive processes (i.e. new OR-trees in the search space) in a way similar to the
activation operator. But we prefer the first view as it is more consistent with the whole
theory and with the merge operator in particular.

The MERGE operator

Type of operator: DYADIC.
Starting DI: FACT or GOAL DIs (see below).
Generated DIs: GOAL or FACT DIs (see below).

4.5 Parsing - Conceptual Level 177

GDI ND!

——3= OR Link

- —— = Auxiliary link
:> Specialization relation

Figure 4.14: Application of the merge operator to a fact FDI (selected by the scheduler)
and a goal GDI

The merge operator is a dyadic operator. Thus it is applied on two Dls; the first
one is selected by the scheduler (the best DI) while the second one is extracted from the
DIDB.

The merging process represents a way to join together two different paths of the search
space. In fact, starting from two DIs that have evolved independently one from the other,
a new DI is generated. This new DI is supported by the union of the word hypotheses that
support the two DIs on which the operator has been applied; in addition the deduction
trees of this new DI results from the union of the derivation trees of the two starting DlIs.

From the point of view of the lexical component, the application of the merge oper-
ator can be seen as a way to group together two different agglomerates that have been
previously generated. It is similar to the proposed islands collision mechanism in the case

of HWIM.

A first point is which DIs are chosen to be merged with the DI selected by the
scheduler. The set of candidate DIs depends on the characteristics of the starting DI
and on some system parameters that control the amount of merging to be performed. A
function that provides the set of DIs to (iry to) be merged with the selected DI is defined
in the system.

There are two possibilities: in the first one (see Fig. 4.14), the selected DI is a fact

(FDI) that it is going to be merged with a goal (GDI); in the second case a selected goal
(GDI) has to be merged with a fact (FDI). The two cases differ only for which item (FDI

178 4 The Understanding Algorithms

or GDI) has the best quality factor and then has been selected by the scheduler.

Let us suppose that the subgoal CS of GDI can be solved by FDI. The resulting NDI
can be either a fact DI or a goal DI. A fact DI is generated if the deduction tree of the
goal DI contains only one subgoal.

In regard to the search space, things are not as simple as before: two deductive paths
are joined together and both are necessary for the solution. As we said before, NDI is
connected to the selected DI (FDI or GDI) by an OR-link. In this way the search activity
is still represented by OR-trees; in addition an auxiliary link connects NDI to the other
DI. This one has not been selected by the scheduler but it has nevertheless been chosen
as a candidate for being merged with the selected one.

There is still a specialization relation either between GDI and NDI or between FDI
and NDI. In other words the specialization relation could be either the OR-link or the
auxiliary link: the merge operator application can cause the specialization of either the
selected DI or of another DI. In Fig. 4.14 the specialization relation corresponds to the
OR-link.

Merging fact DIs with goal DIs allows a better integration among goal-driven and
data-driven search activity and allows also the use of previous results of the search activity

4.6 Parsing - Memory Structures

4.6.1 Introduction

In the previous section we have described from a conceptual point of view the inferential
activity of the lattice parser of SUSY. Deduction instances (DIs) have been introduced as
the basic conceptual items managed by the parser. They are deduction process instances
on which the operators are applied. At each control cycle the best DI is selected by the
scheduler and the proper operators (prediction, subgoaling, verify, merge) are applied to
it. An activation phase is performed when the scheduler selects a word hypothesis instead
of a DI (i.e. when the best word hypothesis is better than the best DI).

One problem that has to be solved when using DIs and integrating forward and
backward search activities is to reduce the amount of memory necessary to represent Dls
and to properly structure the DIDB in order to simplify operators application (the merge
operator, mainly). This section deals with these aspects and proposes a suitable structure
for the DIDB: a hypothesis network making use of two main classes of links.

4.6.2 Representing DIs with Memory Structures: Some Prob-
lems

The deduction instances in the DIDB are represented by their deduction tree (DT). The
most trivial way of implementing a DI would be of course to use an explicit DT for each
of them. This solution, however, is not acceptable because of the large number of DTs
that should be stored in the memory.

To reduce memory occupation it is necessary to make DIs share common parts, if any.
For instance, when two or more deduction instances are generated starting from a certain
DI, their memory representations have some common parts. The most natural type of
representation that meets such requirements are AND-OR trees. Unfortunately, a problem

4.6 Parsing - Memory Structures 179

Figure 4.15: A deduction instance (DI0) represented by an AND tree

arises when constraint propagation is required: the use of AND-OR trees should assume
the OR alternatives to be independent, but this is not true if constraint propagation has
to be performed. An example will clarify this statement.

Let us consider the goal deduction instance DI0 depicted in Fig. 4.15. Let M be the
current subgoal of DI0, and let us suppose that it is a terminal one and that it can be
solved by two different word hypotheses WH1 and WH2. Two new DIs , DI1 and DI2,
can thus be generated. The new situation, which makes use of AND-OR trees, is depicted
in Fig. 4.16.

Now, suppose that N is selected as the current subgoal of DI1. Unfortunately, N
belongs to both DIs: DI1 and DI2. Since they are distinct and endowed with different
word hypotheses, the constraints that have to be transmitted to N are different in the two
cases and it could happen that a fact DI of class N can satisfy, say, DI1 but not DI2, for
it is compatible with the constraints derived from WH1 but not with those derived from
WH2. This means that different constraints have to be propagated to subgoal N. This
can be done by splitting subgoal N in two subgoals N1 and N2 and associating them with
WHI1 and WH2 respectively. The new situation is depicted in Fig. 4.17: two alternative
subtrees with roots G1 and G2 have to be generated. This second kind of use of AND-OR
trees to represent DIs is the one really used by SUSY.

The situation becomes even worse if we consider the other subgoals that could be
chosen as current ones. Let us consider, for instance, subgoal J. If J were chosen as
the current subgoal of the deduction instance DI1 of Fig. 4.16, different constraints would

180 4 The Understanding Algorithms

Di, AND DI,

Figure 4.16: Two deduction instances DI1 and DI2 represented by using in a first way
AND-OR trees: problems of constraint propagation

Figure 4.17: Two deduction instances DI1 and DI2 represented by an AND-OR tree
duplicating subgoal G into G1 and G2

4.6 Parsing - Memory Structures 181

Figure 4.18: The AND-OR tree should represent four DIs but only two must be repre-
sented, as the OR alternatives are not independent. For this purpose two complete AND
trees would be necessary

have to be transmitted to J, and two different subtrees having root E should be generated,
corresponding to WH1 and WH2 respectively. This is shown in Fig. 4.18. Note that the
OR alternatives pertaining to nodes M and E are not independent, as one would expect
if one interprets this structure as a normal AND-OR tree: the alternatives only exist in
couples (indicated by dotted lines in Fig. 4.18). As a matter of fact, the tree represents
just two DIs instead of the four that there would be if the ORs were independent.

By applying the same reasoning to the other subgoals, it is easily seen that the whole
DT has to be n-plicated into many DTs, each having its own characteristics and con-
straints. To keep the n DTs implicitly united in a single structure would be of no use.

In order to continue to take advantage of the use of AND-OR trees also in the case
when constraint propagation has to be performed, we have studied a memory represen-
tation in which the nodes can be shared between DIs without the need to n-plicate the
tree. We show that this is feasible if strong limitations are imposed on the possible ways a
deductive process can go on. This, of course, results in limitations on the possible topolo-
gies of the DTs; the admissible DTs are called canonical DTs, and the associated DIs
are called canonical DIs. A remarkable aspect of these limitations is that they maintain
complete integration between forward and backward activities. As a matter of facts, our
system never uses DIs other than canonical.

182 4 The Understanding Algorithms

4.6.3 Canonical Deduction Instances

We define canonical DIs (CDIs) starting from the definition of canonical deduction trees

(CDTs):

Definition 1:

o A DT is homogeneousif and only if it is a fact DT or a not yet decomposed (sub)goal.
A non-homogeneous DT is one that is not homogeneous.

Definition 2:
e A DT is canonical if it is homogeneous
e A DT is canonical if

— All the (sub)DTs connected to the root are canonical and

~ No more than one of them is non homogeneous.

e No other DTs are canonical.

Definition 3:
e A DI is canonical (CDI) if and only if it corresponds to a canonical DT.

For example, the DIs represented by the DTs depicted in Fig. 4.19 are Canonical; the DI
of Fig. 4.15 was non canonical (its DT has two non homogeneous subtrees).

From the above definitions a consequence follows, that will be stated in the form of a
theorem.

Proposition:

o Consider a goal CDI that corresponds to a non homogeneous deduction tree: such a
tree contains ezxactly one non homogeneous one-level AND subtree.
Proof - By recursion: consider the CDT associated with the CDI. If it is a one-level
tree, the CDT itself is the subtree we are looking for. Otherwise, since the CDI is
canonical, Definitions 1 and 2 ensure that its associated CDT has just one canonical
non homogeneous subtree. Then the above discussion can be applied to this subtree,
until a one-level canonical non homogeneous (sub)n-tree is found.

We call this one-level non homogeneous AND subtree the NHS. An example is shown in
Fig. 4.20.

The proposition implies that there is a one-to-one correspondence between a goal CDI
and its NHS. The NHS is called the representative of the CDI. In the case of a fact CDI

4.6 Parsing - Memory Structures 183

a) b) c)

Figure 4.19: Example of canonical deduction instances, CDIs

Non-Homogenous Subtree (NHMS) -

Figure 4:20:» Thernon-homogeneoussSubtree (NHS) in a canonical deduction instance

(CDI)

184 4 The Understanding Algorithms

its representative is assumed to be the one-level AND subtree of its root. In this way each
CDI is represented exactly by one one-level AND subtree.

We are now able to give the restriction on the way deductive processes can go on so
that only canonical DIs are generated. The required restriction pertains only the subgoal
selection function:

e The current subgoal of a goal CDI can be selected freely only among the leaves of
its NHS.

Starting from a set of canonical DIs and applying the operators described in the previous
sections, all the newly generated DIs have to be canonical.

As far as the subgoaling operator alone is considered, this strategy is similar to a kind
of deph-first search: only when a subgoal is completely solved (a fact is generated) is it
possible to treat subgoals that are ancestors or sisters of that subgoal. When the merge
operator is involved, two canonical DIs can be merged together only if the resulting DI is
still canonical.

The importance of CDIs lies in their one-to-one correspondence between DIs and
their representatives one-level AND subtree. Indeed, the idea is to use somehow the
above described representatives instead of the whole CDIs. More precisely, we want to
characterize the representatives with all the information that is necessary to carry out
an operator application to the CDI when it is selected by the scheduler. For example,
temporal, semantic and syntactic constraints will be part of the necessary information, but
a complete structural description of the DT will not. This objective can be practically
realized by introducing a special structure called a phrase hypothesis (PH). How PHs
are used to implement CDIs in a fashion that insures full compatibility with the use of
AND-OR trees will be explained in the next section.

4.6.4 Phrase Hypotheses as Representatives of CDIs

A phrase hypothesis is a memory structure that implements a one-level AND subtree. A
PH is, on the grounds of its definition, a non-terminal problem that has been decomposed
into subproblems according to a certain problem-solving structure and where none, one
or more subproblems have been solved. From the point of view of the KSs, a phrase
hypothesis can be seen as an instance of a KS, having its slots completely or partially
filled and whose aim is to fill all of them in order to complete itself. Clearly, if all the
subgoals have been solved, the PH represents a fact rather than a goal. If a PH represents
a fact it is said to be complete; otherwise it is said to be incomplete.

A PH is used to implement the NHS of a goal CDI, or the root one-level AND tree of
a fact CDI, and stores all the information that is necessary for that CDI to be processed,
when selected by the scheduler. In this way the PH acts as a “representative” of the whole
CDIin the DIDB. As we have said, constraints are part of the information associated with
PHs, and the canonicity of the CDI insures that the problems of constraint-conflict will not
arise. Similarly, when a new CDI is generated, only one new PH is created, characterized
by all the information necessary to process the new CDI and hence representing the whole
new CDI in the DIDB,

We conclude this paragraph with an observation that will be resumed later on. Be-
tween PHs and KSs a n:1 relation exists, as PHs are instances of KSs. As there is also

4.6 Parsing - Memory Structures 185

CDIz coy,

]
O
[=d

a)

Figure 4.21: The PH-tree in a) represents the three canonical deduction instances (CDIs)
represented in b), c), d)

a 1:1 correspondence between PHs and CDIs, it follows that all the fact and goal CDIs
making up the DIDB can be partitioned into equivalence classes according to the KS they
correspond to.

Phrase hypotheses and AND-OR trees

Phrase hypotheses can be connected by composition links (CLs) to form OR-trees of PHs,
i.e. AND-OR trees, as PHs are AND trees. Let us consider, for example, the case of the
simple tree given in Fig. 4.21a. Incidentally, this tree has no OR alternatives. Its structure
strongly suggests a direct correspondence with the CDI reported in Fig. 4.21b (CDI1).
However, only its node PH1 represents CDI1: the other PHs represent other CDIs. For
example, PH2 represents the canonical deduction instance CDI2 given in Fig. 4.21c and
possesses all the information and constraints pertaining to CDI2; similar considerations
hold for PH3, which represents CDI3. Thus the PH-tree actually represents three CDlIs,
and not only one.

A misunderstanding must be avoided. When we said that PH1 represents CDI1 we
did not mean that the other PHs are unrelated to CDI1, but only that PH1 can be used
alone when an operator is applied to CDI1. The way the other PHs are interconnected by
CLs, gives information on the structural characteristics of the CDI. We will refer to these
PHs as the component PHs of the CDI.

The interesting point is that PH-trees can have non-canonical structures, possibly

186 4 The Understanding Algorithms

with OR alternatives; since only canonical DIs are considered, no conflict will arise. An
example is shown in Fig. 4.22. The PH-tree of Fig. 4.22a represents seven CDIs, three of
which are reported in the figure.

Figure 4.22b shows the canonical AND tree CDT6 represented by PH6. Clearly, the
subtrees deriving from the OR alternatives PH4 and PH5 are not present; thus, CL4 and
CL5 were discarded. However, CL1 has been discarded too; otherwise, the resulting DT
would not have been canonical. Informally, one could say that PH6 “sees” the PH-tree
it is part of as lacking the PH-subtrees that would give rise to a non-canonical structure.
More precisely, PH6 represents a CDI describing a deductive process in which choices
have been taken at the OR alternatives and subgoal B was not yet decomposed. Note,
by the way, that CL2 is not discarded in CDT6 because, PH2 being the representative of
a fact, the resulting structure is still canonical.

A similar analysis may be done for the other two cases. The previous examples showed
some general concepts that we now summarize:

1. PHs correspond directly to KSs.
2. A PH-tree of n PHs represents exactly n canonical Dls.

3. An incomplete PH that is part of a PH-tree represents the canonical deduction
tree corresponding to the only AND tree, extracted from the OR PH-tree, that is
canonical and has PH as its non homogeneous subtree (NHS): when extracting AND
trees from PH-trees, the CLs are taken into consideration if and only if they do not
compromise canonicity. CLs to facts do not compromise canonicity.

4. A complete PH has the same structure of an incomplete PH, the difference being
that there are no subgoals but only facts. A complete PH always represents a fact
CDI.

Phrase hypotheses and contexts

There is an alternative way of seeing the correspondence between phrase hypotheses and
DIs. From this point of view there are two kinds of PHs: those whose root is free (i.e. it
is not connected to other PHs) and those whose root is not free. The former PHs are said
to be free from context while the latter are within a contezt.

If a PH is within a contezt, its quality factor takes into account also all the word
hypotheses which are involved in such a context; in this way it is the representative of the
whole context. Of course the definition of context is recursive, so in Fig. 4.23, PH1 is in
the context of PH2 that is, in its turn, in the context of PH4: so PHI is in the context of
both PH2 and PH4.

The result is that the context of PH1 is the whole deduction tree and the word
hypotheses that have to be considered to determine its quality factor are B,L,M,N,H I
(the solved terminal subgoals of the deduction tree). In such a way PHI represents the
whole DI. The constraint of canonicity means that the PHs constituting the context of
PH1 (i.e. PH2 and PH4) must have the remaining subgoals (i.e those not on the context
path: C and G) either already solved (like E,B and H) or still to be decomposed (like F
and D).

4.6 Parsing - Memory Structures 187

a. The AND-OR tree of phrase hypotheses represents seven canonical DIs. Seven AND
trees can be extracted, each corresponding to a canonical DT.

b. The CDT corresponding to PH6. CL1 has been discarded, otherwise the DT would
not have been canonical. When extracting AND trees, the CLs are taken into
consideration if and only if they do not compromise canonicity.

c. The CDT corresponding to PH3. CL5, CL6 and CL1 have been discarded.

d. The CDT corresponding to PH1. CL2 has not‘béen discarded: CLs to facts do not
compromise canonicity and hence they are always considered.

Figure 4.22: Phrase hypotheses and AND-OR ftrees

188 4 The Understanding Algorithms

Figure 4.23: A phrase hypothesis PH1 in the context of two other phrase hypotheses PH2
and PH4

4.6.5 Search Space of CDIs and Links Between PHs

Since every goal or fact CDI corresponds to a single representative PH, it follows that the
Specialization Relations between CDIs can find a mapping onto a relation between PHs.
This relation is represented by links that connect PHs. Two different kinds of links exist:

1. The first type of link refers to PHs corresponding to different KSs: it is the compo-
sition link CL between PHs that we have introduced before. Until now, CLs were
used to form OR trees of PHs. As we have seen, they do represent the topology of
a deduction tree, that is, the structural characteristics of a DI

2. The second type of link refers to PHs of the same KS. It is a novel link called a
specialization link (SL). An SL is only used to represent the specialization relation
at the memory level.

Figure 4.24 presents a simple example. The specialization relation sr between CDI1
and CDI3 is transferred to the memory level as a specialization link SL between PH1 and
PH3.

To be precise, an SL between two PHs does not simply map a specialization relation,
but maps an element of the transitive closure of the specialization relation. Note that
specialization relations can be represented, at the memory level, also by the CLs (when
the subgoaling and merge operators are involved).

The example in Fig. 4.25 shows that link SL3 between PH2 and PH5 corresponds to
an element sr* of the transitive closure of the specialization relation. A specialization link
between PH4 and PH5 was not_inserted because PH4 and PH5 refer to different classes;
anyway it is not necessary, being present link SL3. PH5’ represents the by-product CDI5’
obtained through the application of the verify operator to CDI4.

4.6 Parsing - Memory Structures 189

cot, ® coy,
/
/

2) col

The specialization relation sr between CDI1 and CDI3 (a) has been transferred to the
memory level (c) as a specialization link SL between PH1 and PH3 (representing CDI1
and CDI3).

Figure 4.24: Specialization relation and specialization links

190 4 The Understanding Algorithms

CDI

a) Level

cL,
. - - -~ \\
PH, SL1 PH2 s PH3 SLZ ~ PH, PHs st, PHG
b) O —_—_:D CL, :§b O :D O
PH
Level
st
Class A A B [} A A

c)

Mapping among specialization relation (a) and specialization and composition links (b).
The specialization link SL3 between PH2 and PH5 (b and c) corresponds to the sr*
connecting CDI2 to CDI5. For efficiency reasons link CL1’ is maintained (CLs are also
use to constitute the AND tree associated with CDIs).

Figure 4.25: Specialization relation and composition links

4.6 Parsing - Memory Structures 191

Figure 4.26: Application of the verify operator: no facts have been generated

Note that a link, SL3’, was added between PH4 and PH5’. This link does not represent
a specialization relation at all but only an auxiliary link. Links such as SL3’ are added
only because they are useful during the application of the MERGE operator. In Sect.
4.6.9 this subject will be discussed in further detail.

In summary, if PH1 is connected by a SL to PH2, then CDI1 (represented by PH1)
is less specific than CDI2 (represented by PH2). This means that CDI1 is one of the
previous states of the deductive process leading to CDI2. CDI2 does not need to be
directly connected to CDI1 by a specialization relation, but they must be connected
by the transitive closure of the specialization relation. In other words there must be
a sequence CDI11, , CDIln of deduction instances such that CDI1 is connected to
CDI11, CDI11 to CDI12, ... , CDIln to CDI2.

PHs connected by SLs form the so-called specialization trees (STs). From what was
said above, each ST corresponds to a KS and the level of a PH in the ST corresponds to
its level of completion: complete PHs are always leaves of STs. In Sect. 4.6.4 it was said
that, as there is a 1:1 correspondence between PHs and CDIs, all the fact and goal CDIs
making up the DIDB can be partitioned into equivalence classes according to the KS to
which they correspond. So STs correspond directly to KSs.

The following sections deal with the application of specific operators, and they will
better clarify these concepts.

4.6.6 The VERIFY Operator

The VERIFY operator solves a terminal subgoal with a suitable word hypothesis from
the lattice. That subgoal could be solved in many different ways if there is more than
one suitable word hypothesis. Let CDI1 be a goal deduction instance characterized by a
current subgoal CS; let PH1 be the phrase hypothesis representing CDI1 (see Fig. 4.26).
Let us suppose that the VERIFY operator is applied to CDI1. For the sake of simplicity,
let us assume that only one suitable word hypothesis WH can be found in the WHDB
able to satisfy CS.

The resolution of CS requires the generation of a new deduction instance CDI2. From
the memory point of view it will be necessary to generate (at least) a new PH in order to

192 4 The Understanding Algorithms

Figure 4.27: Application of the verify operator: only one complete phrase hypothesis
(PH2) has been generated by the application of the verify operator

represent the canonical deduction instance CDI2. It is then reasonable to make a copy of
PH1 generating a new hypothesis PH2 where its subgoal CS is solved by WH.

By now two different kinds of actions are taken, according to whether PH2 is still a
goal or has become a fact:

1. In the first case (as in Fig. 4.26) PH1 and PH2 must be connected by a specialization
link SL. In this case, therefore, the specialization relation between CDls is directly
mapped onto a SL between PHs.

2. In the second case (PH2 is a complete one) there are still two possibilities:

¢ In the first one PH1 has no ancestors (see Fig. 4.27). In this case there would
be no other goals to be solved and the deductive process associated with CDI1
can stop. The new CDI2 is then a fact DI connected by a specialization relation
to CDI1. At the memory level PH2, that is a complete PH obtained in the
same way we have seen before, is connected by a specialization link SL to PH1.

¢ In the second one PH1 has ancestors (see Fig. 4.28). In this case PH2’ is not
at all a representative of a specialization of CDI1: it is only the representative
of a new CDI (CDI2’) that represents the by-product of the application of the
verify operator to CDI1. Here PH2' is connected to PH1 by a specialization
link SL3, though this link does not represent a specialization relation at all.

In the last case what we have to do is to run the specialization relation backward until
a deduction instance CDI0 pertaining to a different KS is found. At the memory level
we can do that simply following the CL of PH1. A new deduction instance CDI2 is then
generated and represented by a new phrase hypothesis PH2, obtained by copying and
specializing hypothesis PHO. The specialization consists in solving the current subgoal

4.6 Parsing - Memory Structures 193

CLASS OF RS A c c A
CDlp CDlg_q col, col, cor',
(VERIFY)

i (SUBGOALING) I (VERIFY)

\

|

!

L
N

~————

Figure 4.28: Application of the verify operator: more than one complete phrase hypothesis
(PH2 and PH2’) has been generated by the application of the verify operator

CS0 of PHO with PH2’ (i.e. a composition link between PH2 and PH2’ is established).
PH2 is then connected to PHO by an SL.

Now, if CDI2 is still a goal, the situation is precisely the one depicted in Fig. 4.28. If
instead the result is that CDI2 is a fact itself, the above mentioned procedure takes place
again, until applicable.

4.6.7 The SUBGOALING Operator

We consider the application of the subgoaling operator to a certain CDI1 characterized by
a current subgoal CS and represented by phrase hypothesis PH1.

Let us assume the result of the application to be a new CDI2 where the current subgoal
CS of CDI1 has been decomposed into the subgoals (E,F,G) according to a given KS. The
phrase hypothesis that represents CDI2 is PH2 (see Fig. 4.29). One of its subgoals, say
F, will then be selected as the current subgoal NCS for CDI2.

CDI2 is more specific than CDI1 because it contains more information about the
way of solving one of its subgoals; then it must be connected to CDI1 by a conceptual
specialization relation. PH2 is connected by the composition link CL1 to PH1.

Composition link CL1 stands both as a structural way of reconstructing the deduction

tree corresponding to CDI2 and as a correspondant of the specialization relation between
CDI1 and CDI2 at the memory level.

4.6.8 The PREDICTION Operator

The prediction operator is applied to a fact CDI and generates new goal CDIs. We consider
the case, shown in Fig. 4.30, in which the prediction operator is applied to fact CDI1,

194 4 The Understanding Algorithms

Current Subgoal (CS)

New Current Subgoal (NCS8)

Figure 4.29: Application of the subgoaling operator

represented by PH1, and generates the goal CDI2.

It is assumed that the KS requires three fillers slots of class B, C and D, and that D
is the subgoal solved by the fact F. Then the result of the prediction application is the
generation of a new phrase hypothesis PH2 connected to PH1 through CL1. One of its
subgoals (say B) will be selected as the current subgoal for CDI2.

Note that CDI2 is a novel goal to be pursued; thus it is not connected by a SL to any
CDI. The function of the prediction operator is the “creation” of novel goal CDIs rather
than the specialization of already existing CDIs. The CDIs generated by the application
of the prediction operator are the roots of future conceptual specialization trees.

4.6.9 The MERGE Operator

The merge operator is the most complex of the four operators. Given the current deduction
instance CDI1, the merge operator, being a dyadic operator, tries to use other CDIs
contained in the DIDB to produce new CDIs.

Not all the CDIs of the DIDB are candidates for the merge operator application; only
a subset is extracted. Let be CDI2 one of them. If the tests on the constraints condi-
tions succeed, the merge operator applied on CDI1 and CDI2 generates a new deduction
instance CDI3.

Merge can take place during both bottom-up and top-down search activity; the in-
volved tasks are nevertheless the same. Fig. 4.31 represents the application of the merge
operator between fact CDI1 and goal CDI2. CDI1 is represented by phrase hypothesis

4.6 Parsing - Memory Structures 195

NHS Corresponding to CDiy

Fact Corresponding to CDI; (F)

Figure 4.30: Application of the prediction operator

PH1,; goal CDI2 is represented by phrase hypothesis PH2, current subgoal CS. The cur-
rent subgoal CS of CDI2 has to be of the same class (D in figure) of CDI1. What happens
is very similar to the application of the verify operator: a new goal CDI3 is created,
substituting subgoal CS of CDI2 with the fact CDI1.

As was the case with the verify operator, two cases must be distinguished, according
to whether PH2 completes itself thanks to PH1 or not. If not, CDI3 is a more specific
goal than CDI2 (a conceptual specialization relation connects them).

Then the new phrase hypothesis PH3 of CDI3 will be connected to PH2 by a SL. This
is the actual situation depicted in Fig. 4.31. Otherwise, if PH2 completes itself, beside
the creation of the appropriate links, it would be necessary to follow the procedure that
has been described during the illustration of the verify operator; we do not repeat those
considerations.

It is interesting to observe that the CDI selected by the scheduler (selected CDI) could
be either the fact (CDI1) or the goal (CDI2). Considering a single couple of CDIs the only
difference is that the specialization relation always connects the goal CDI to the new CDI
while in the search OR tree the selected CDI is always connected to the newly generated
CDI (see Fig. 4.32).

How links are exploited

The compositional and specialization links are used heavily during many phases of the
control cycle. We have illustrated how CLs and SLs are followed during the application

196 4 The Understanding Algorithms

CDa: (PHp , PHy)

-

coly:

-

(PHg 4 PHy + PH3)

- -

Figure 4.31: Application of the merge operator: merging a fact DI with a goal DI. The
merge operator applied on CDI1 and CDI2 (represented by PH1 and PH2) generates CDI3
(represented by PH3)

)
! ’
) 4
Vs 4
col, col, co, &'2
N /’
N ’
N s’
\\ J/
col, col,

b
\

hY

- -

a) b)

Figure 4.32: Application of the merge operator on a fact and a goal DI. Auxiliary links
(represented by dotted lines) can start either from the goal (CDI2) or from the fact
(CDI1). a) The scheduler selected goal CDI2. b) The scheduler selected fact CDI1. No
differences are present at the memory level for the two cases (see Fig. 4.31)

4.7 Parsing - Dealing with Missing Words 197

of the verify operator (Sect. 4.6.6); here we shall describe the use of specialization links
during the application of the merge operator.

1) Merge of a fact CDI with a goal CDI; the selected CDI is a fact.
All the KSs that have at least a filler slot of the class of the selected fact CDI are triggered.
Then, for each KS, its associated specialization tree is scanned, searching for goal CDIs
(in practice, PHs) that could be merged with the fact CDI. When a phrase hypothesis PH
is found that is not compatible for merging, the specialization subtree having PH as its
root is no longer searched: in fact, the PHs belonging to that subtree are more specialized
than PH and thus they too will be incompatible for merging. The decision whether two
CDIs (represented by their representative PHs) are compatible or not depends on the
constraints propagation and check activity.

2) Merge of a goal CDI with a fact CDI; the selected CDI is a goal.
Let CDI1 be the selected goal CDI and CS its current subgoal. All the KSs are of the
same class as CS. For each of them its associated specialization tree is scanned, searching
for fact CDIs (PHs) that could be merged with CDI1. It is interesting to note that thanks
to the “spurious” SLs (like SL3’ of Fig. 4.28) candidate fact DIs can be easily found as
the leaves of the specialization tree. This explains why those links were added.

4.7 Parsing - Dealing with Missing Words

4.7.1 Introduction

This section describes a method for analyzing lattices of lexical hypotheses when short,
less significant words are not detected by the recognition system. The basic consideration
is that some function words, like articles, some prepositions and other usually short words,
are often unnecessary to understand a sentences. Thus it is possible to correctly analyze
a lattice in which some of these words are missing without querying the user.

There are other cases of possibly missing words, different from the one referenced
here in that the words have a significant semantic content. For example, words such
as ‘mount’ or ‘Piedmont’ (that is, common or proper nouns of the domain’s entities)
are usually essential for understanding the uttered sentence and thus they fall into the
latter category. To cope with cases in which a word of such a type is not present in
the lattice of lexical hypotheses, it is necessary to correctly understand the parts of the
sentence in which all of the right words have been hypothesized, to spot the zone of the
utterance in which the undetected word should lie, and either to perform a more specific
verification at the phonetic level, or to start an interaction with the user aimed at eliciting
the information necessary to identify the word.

4.7.2 The Problem

The problem of devising a strategy able to analyze a lattice independently (at least to
a certain extent) from the presence of some types of short word hypotheses cannot be
eluded, because short words, consisting of one or two phonetic units, are by their nature
unreliably recognized. A short word covers a very low number of states of the hidden
Markov model used to represent it [17], and then its score depends heavily on random
events (burst noise, defect in pronunciation, etc.) that are temporally coincident with

198 4 The Understanding Algorithms

the uttered word. The situation is different for a long word, because it covers a high
number of states and thus its score depends on events spanned on a longer hystory; that
is, it is more ‘averaged’. In addition there is the problem of coarticulation between such
short word and the previous and subsequent word that affect the real pronunciation of the
word. So, short words happen more frequently than long words to be badly recognized or
to go undetected; in addition, their scores are not always reliable. If they are undetected,
a standard analysis requiring all of the uttered words to be present in the lattice simply
would not work, and if they have bad scores it would encounter heavy inefficiencies.

There is also an opposite problem for continuous speech. It can happen with a certain
frequency that false short words are erroneously detected, and a good score is assigned
to them. That is especially true when their phonetic representation is also part of a
longer word that was actually detected and if their corresponding time interval is free of
significant score-degrading events. In these cases, a standard analysis would unduly delay
the solution by considering such incorrect word hypotheses.

Types of frequently missing short words

In the subset of the Italian language defined by the knowledge bases of the system, short
words of the type mentioned above fall into different classes.

1. Articles (“il”, “lo”, “la”, “”, “gli”, “le”). The presence of such words is, in our
domain, almost always irrelevant for the correct comprehension of the utterance,
provided the other words are correctly recognized. Indeed, using grammar rules it
is possible to infer what the appropriate article should be, given a correct inter-
pretation of the rest of the sentence; so this information can be used to complete
recognition.

2. Prepositions (“di”, “a”, “da”, “in”, etc.). Italian prepositions come in two types,
simple and articulated. Simple prepositions are usually very short and generally
monosyllabic. Articulated prepositions, which group into a single word a prepo-
sition and an article (e.g. “dello” [“If the”]), are instead longer and more easily
recognized. Though in some cases they are unnecessary to understand a sentence, it
is not desirable to simply ignore them, because they could provide useful temporal
constraints and (especially the long <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>